版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省鹰潭一中2024届高二数学第二学期期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某几何体的三视图如图所示,其中圆的半径均为,则该几何体的体积为()A. B. C. D.2.设离散型随机变量的分布列如右图,则的充要条件是()123A.B.C.D.3.下列命题中为真命题的是()A.若B.命题:若,则或的逆否命题为:若且,则C.“”是“直线与直线互相垂直”的充要条件D.若命题,则4.在三棱锥中,平面平面ABC,平面PAB,,,则三棱锥的外接球的表面积为()A. B. C. D.5.将两颗骰子各掷一次,设事件A为“两颗骰子向上点数不同”,事件B为“至少有一颗骰上点数为3点”则()A. B. C. D.6.定义在上的偶函数满足,且当时,,函数是定义在上的奇函数,当时,,则函数的零点的的个数是()A.9 B.10 C.11 D.127.有8件产品,其中4件是次品,从中有放回地取3次(每次1件),若X表示取得次品的次数,则()A. B. C. D.8.已知数列的通项公式为,则()A.-1 B.3 C.7 D.99.一个空间几何体的三规图如图所示,则该几何体的体积为()A. B. C. D.10.已知复数,则其共轭复数对应的点在复平面上位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.如图,是正四面体的面上一点,点到平面距离与到点的距离相等,则动点的轨迹是()A.直线 B.抛物线C.离心率为的椭圆 D.离心率为3的双曲线12.在数学归纳法的递推性证明中,由假设时成立推导时成立时,增加的项数是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件.再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件.给出下列结论:①P(B)25;②P(B|A1)511;③事件B与事件A1相互独立;④A1,A2,A3是两两互斥的事件;⑤P(B)的值不能确定,因为它与A1,A2,A3中究竟哪一个发生有关;其中正确的有()②④①③②④⑤②③④⑤14.一个高为的正三棱锥的底面正三角形的边长为3,则此正三棱锥的表面积为_______.15.已知某程序框图如图所示,则执行该程序后输出的结果是_____16.已知集合,若则集合所有可能的情况有_________种.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若函数在区间上单调递增,求的取值范围;(2)设函数,若存在,使不等式成立,求实数的取值范围.18.(12分)已知函数.(Ⅰ)当时,解不等式;(Ⅱ)若,对任意都有恒成立,求实数的取值范围.19.(12分)已知函数.(1)解不等式;(2)若正数,满足,求的最小值.20.(12分)如图所示,已知ABCD是直角梯形,,.(1)证明:;(2)若,求三棱锥的体积.21.(12分)如图,四棱锥中,,,,,,.(1)求证:;(2)求钝二面角的余弦值.22.(10分)已知函数f(x)=|2x-1|-|x+2|.(1)求不等式f(x)≥3的解集;(2)若关于x的不等式f(x)≥t2-3t在[
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】该几何体为一棱长为6的正方体掏掉一个棱长为2的小正方体,再放置进去一个半径为1的球,所以体积为.故选A.2、B【解题分析】
由题设及数学期望的公式可得,则的充要条件是.应选答案B.3、B【解题分析】分析:对四个命题,分别进行判断,即可得出结论.详解:对于A,,利用基本不等式,可得,故不正确;
对于B,命题:若,则或的逆否命题为:若且,则,正确;
对于C,“”是“直线与直线互相垂直”的充要条件,故不正确;
对于D,命题命题,则,故不正确.
故选:B.点睛:本题考查命题的真假判断与应用,考查学生分析解决问题的能力,属基础题.4、B【解题分析】
如图,由题意知,,的中点是球心在平面内的射影,设点间距离为,球心在平面中的射影在线段的高上,则有,可得球的半径,即可求出三棱锥的外接球的表面积.【题目详解】由题意知,,的中点是球心在平面中的射影,设点间距离为,球心在平面中的射影在线段的高上,,,,又平面平面ABC,,则平面,,到平面的距离为3,,解得:,所以三棱锥的外接球的半径,故可得外接球的表面积为.故选:B【题目点拨】本题主要考查了棱锥的外接球的表面积的求解,考查了学生直观想象和运算求解能力,确定三棱锥的外接球的半径是关键.5、D【解题分析】
用组合数公式计算事件A和事件AB包含的基本事件个数,代入条件概率公式计算.【题目详解】解:两颗骰子各掷一次包含的基本事件的个数是1.事件A包含的基本事件个数有,则.事件AB包含的基本事件个数为10,则.所以在事件A发生的条件下,事件B发生的概率为:,故选:D.【题目点拨】本题考查条件概率,属于基础题.6、C【解题分析】
由,得出,转化为函数与函数图象的交点个数,然后作出两个函数的图象,观察图像即可.【题目详解】由于,所以,函数的周期为,且函数为偶函数,由,得出,问题转化为函数与函数图象的交点个数,作出函数与函数的图象如下图所示,由图象可知,,当时,,则函数与函数在上没有交点,结合图像可知,函数与函数图象共有11个交点,故选C.【题目点拨】本题考查函数的零点个数,有两种做法:一是代数法,解代数方程;二是图象法,转化为两个函数的公共点个数,在画函数的图象是,要注意函数的各种性质,如周期性、奇偶性、对称性等性质的体现,属于中等题.7、D【解题分析】
首先把取一次取得次品的概率算出来,再根据离散型随机变量的概率即可算出.【题目详解】因为是有放回地取产品,所以每次取产品取到次品的概率为.从中取3次,为取得次品的次数,则,,选择D答案.【题目点拨】本题考查离散型随机变量的概率,解题时要注意二项分布公式的灵活运用.属于基础题.8、C【解题分析】
直接将代入通项公式,可得答案.【题目详解】数列的通项公式为.所以当时,.故选:C【题目点拨】本题考查求数列中的项,属于基础题.9、B【解题分析】
根据三视图得知该几何体是四棱锥,计算出四棱锥的底面积和高,再利用锥体体积公式可得出答案.【题目详解】由三视图可知,该几何体是四棱锥,底面是矩形,其面积为,高为,因此,该几何体的体积为,故选B.【题目点拨】本题考查三视图以及简单几何体体积的计算,要根据三视图确定几何体的形状,再根据体积公式进行计算,考查空间想象能力与计算能力,属于中等题.10、D【解题分析】
先利用复数的乘法求出复数,再根据共轭复数的定义求出复数,即可得出复数在复平面内对应的点所处的象限.【题目详解】,,所以,复数在复平面对应的点的坐标为,位于第四象限,故选D.【题目点拨】本题考查复数的除法,考查共轭复数的概念与复数的几何意义,考查计算能力,属于基础题.11、C【解题分析】分析:由题设条件将点P到平面ABC距离与到点V的距离相等转化成在面VBC中点P到V的距离与到定直线BC的距离比是一个常数,依据圆锥曲线的第二定义判断出其轨迹的形状.详解:∵正四面体V﹣ABC∴面VBC不垂直面ABC,过P作PD⊥面ABC于D,过D作DH⊥BC于H,连接PH,可得BC⊥面DPH,所以BC⊥PH,故∠PHD为二面角V﹣BC﹣A的平面角令其为θ则Rt△PGH中,|PD|:|PH|=sinθ(θ为V﹣BC﹣A的二面角的大小).又点P到平面ABC距离与到点V的距离相等,即|PV|=|PD|∴|PV|:|PH|=sinθ<1,即在平面VBC中,点P到定点V的距离与定直线BC的距离之比是一个常数sinθ,又在正四面体V﹣ABC,V﹣BC﹣A的二面角的大小θ有:sinθ=<1,由椭圆定义知P点轨迹为椭圆在面SBC内的一部分.故答案为:C.点睛:(1)本题主要考查二面角、椭圆的定义、轨迹方程等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.(2)解答本题的关键是联想到圆锥曲线的第二定义.12、C【解题分析】分析:分别计算当时,,当成立时,,观察计算即可得到答案详解:假设时成立,即当成立时,增加的项数是故选点睛:本题主要考查的是数学归纳法。考查了当和成立时左边项数的变化情况,考查了理解与应用的能力,属于中档题。二、填空题:本题共4小题,每小题5分,共20分。13、②④【解题分析】试题解析::由题意可知A1,A2,AP(B|A3=P(A1)P(B|A1考点:相互独立事件,条件概率.【方法点晴】本题主要考查了相互独立事件,条件概率的求法等,解题的关键是理解题设中的各个事件,且熟练掌握相互独立事件的概率公式,本题较为复杂,正确理解事件的内涵是解题的突破点.解答本题的关键是在理解题意的基础上判断出A1,A2,A3是两两互斥的事件,根据条件概率公式得到P(B|A114、【解题分析】
取中点,连结,,过作平面,交于,则,,,,此正三棱锥的表面积:,由此能求出结果.【题目详解】一个高为的正三棱锥中,,取中点,连结,,过作平面,交于,则,,,,此正三棱锥的表面积:.故答案为:.【题目点拨】本题考查正三棱锥的表面积的求法,考查正三棱锥的性质等基础知识,考查运算求解能力和空间想象能力.15、-1【解题分析】
计算的值,找出周期,根据余数得到答案.【题目详解】依次计算得:….周期为32019除以3余数为0,故答案为-1【题目点拨】本题考查了程序框图的相关知识,计算数据找到周期规律是解题的关键.16、【解题分析】
通过确定X,Y,Z的子集,利用乘法公式即可得到答案.【题目详解】根据题意,可知,由于,可知Z共有种可能,而有4种可能,故共有种可能,所以答案为128.【题目点拨】本题主要考查子集相关概念,乘法分步原理,意在考查学生的分析能力,计算能力,难度较大.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】试题分析:(1)由函数的解析式可得在上单调递增,则的取值范围是;(2)原问题等价于存在,使不等式成立.构造新函数,结合函数的性质可得实数的取值范围为.试题解析:(1)由得,在上单调递增,,的取值范围是.(2)存在,使不等式成立,存在,使不等式成立.令,从而,,,在上单调递增,.实数的取值范围为.18、(Ⅰ)(−∞,−5)∪(1,+∞);(Ⅱ)(0,6]【解题分析】
(Ⅰ)由题知当a=−1时,不等式等价于|x+3|+|x+1|>6,根据绝对值的几何意义能求出不等式的解集.
(Ⅱ)由,对任意都有,只需f(x)的最小值大于等于的最大值即可,转化成函数最值问题建立不等关系式,由此能求出a的取值范围.【题目详解】(Ⅰ)∵函数,∴当a=−1时,不等式等价于|x+3|+|x+1|>6,根据绝对值的几何意义:|x+3|+|x+1|>6可以看作数轴上的点x到点−3和点−1的距离之和大于6,则点x到点−3和点−1的中点O的距离大于3即可,∴点x在−5或其左边及1或其右边,即x<−5或x>1.∴不等式的解集为(−∞,−5)∪(1,+∞).(Ⅱ)∵,对任意都有,只需f(x)的最小值大于等于的最大值即可.由可得,,设,根据二次函数性质,,∴,解得,又,∴∴a的取值范围是(0,6].【题目点拨】本题考查绝对值三角不等式,绝对值不等式的解法:(1)数形结合:利用绝对值不等式的几何意义[即(x,0)到(a,0)与(b,0)的距离之和]求解.(2)分类讨论:利用“零点分段法”求解.(3)构造函数:利用函数的图像求解,体现了函数与方程的思想.本题属于中等题.19、(1);(2).【解题分析】
(1)去绝对值,根据分段函数的解析式即可求出不等式的解集;(2)由题意得,再根据基本不等式即可求出.【题目详解】(1)因为所以①当时,由,解得②当时,由,解得又,所以③当时,不满足,此时不等式无解综上,不等式的解集为(2)由题意得所以=当且仅当时等号成立,所以的最小值为.【题目点拨】本题考查解绝对值不等式和利用基本不等式的简单证明,注意利用基本不等式证明时要强调等号成立的条件!20、(1)见解析;(2)【解题分析】
(1)由题可得:,,可得:,即可证得,再利用证得,即可证得平面,问题得证.(2)利用及锥体体积公式直接计算得解.【题目详解】(1)由题可得:,所以所以又所以,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 急诊护士的工作体会
- 美容美发行业化妆师培训心得
- 玩具行业助理工作总结
- 医务室护士的工作感悟
- 咨询行业行政后勤工作总结
- 服务员的服务技巧与服务态度
- 生物知识综合讲解计划
- 完善酒店营销策略
- 咨询行业美工工作总结
- 税务筹划实践感悟
- DB63T 2376-2024 餐饮单位有害生物防治技术指南
- 中考语文名著《西游记》专项复习:《三调芭蕉扇》
- 2025新年春节专用对联蛇年春联带横批
- 【MOOC】融合新闻:通往未来新闻之路-暨南大学 中国大学慕课MOOC答案
- 2024年世界职业院校技能大赛中职组“工程测量组”赛项考试题库(含答案)
- JGJT46-2024《施工现场临时用电安全技术标准》条文解读
- 半结构化面试题100题
- 静脉治疗小组管理
- 服装厂班组长培训
- 浙江省杭州二中2025届物理高三第一学期期末联考试题含解析
- 带货主播年终总结汇报
评论
0/150
提交评论