2024届江西省铅山一中、横峰中学数学高二第二学期期末学业水平测试试题含解析_第1页
2024届江西省铅山一中、横峰中学数学高二第二学期期末学业水平测试试题含解析_第2页
2024届江西省铅山一中、横峰中学数学高二第二学期期末学业水平测试试题含解析_第3页
2024届江西省铅山一中、横峰中学数学高二第二学期期末学业水平测试试题含解析_第4页
2024届江西省铅山一中、横峰中学数学高二第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江西省铅山一中、横峰中学数学高二第二学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,且,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.,,三个人站成一排照相,则不站在两头的概率为()A. B. C. D.3.的展开式中各项系数的和为2,则该展开式中常数项为A.-40 B.-20 C.20 D.404.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A. B. C.48 D.5.某西方国家流传这样的一个政治笑话:“鹅吃白菜,参议员先生也吃白菜,所以参议员先生是鹅”结论显然是错误的,是因为()A.大前提错误 B.推理形式错误 C.小前提错误 D.非以上错误6.已知命题,则命题的否定为()A. B.C. D.7.独立性检验中,假设:运动员受伤与不做热身运动没有关系.在上述假设成立的情况下,计算得的观测值.下列结论正确的是()附:1.111.151.1111.1152.7163.8416.6357.879A.在犯错误的概率不超过1.11的前提下,认为运动员受伤与不做热身运动有关B.在犯错误的概率不超过1.11的前提下,认为运动员受伤与不做热身运动无关C.在犯错误的概率不超过1.115的前提下,认为运动员受伤与不做热身运动有关D.在犯错误的概率不超过1.115的前提下,认为运动员受伤与不做热身运动无关8.已知集合,,则()A. B. C. D.9.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于同一个常数.若第一个单音的频率为f,第三个单音的频率为,则第十个单音的频率为()A. B. C. D.10.设x0是函数f(x)=lnx+x﹣4的零点,则x0所在的区间为()A.(0,1) B.(1,2) C.(2,3) D.(3,4)11.在同一直角坐标系中,曲线y=sin(x+πA.y=13C.y=3sin(2x+12.从名男生和名女生中选出人去参加辩论比赛,人中既有男生又有女生的不同选法共有()A.种 B.种 C.种 D.种二、填空题:本题共4小题,每小题5分,共20分。13.已知某程序框图如图所示,则执行该程序后输出的结果是_____14.在平面直角坐标系中,记椭圆的左右焦点分别为,若该椭圆上恰好有6个不同的点,使得为等腰三角形,则该椭圆的离心率的取值范围是____________.15.已知,在函数与的图象的交点中,距离最短的两个交点的距离为,则值为__________.16.已知命题,若命题是假命题,则实数的取值范围是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数f(x)=ax2+bx+c(a>0,b∈R,c∈R).(1)若函数f(x)的最小值是f(-1)=0,且c=1,F(x)=求F(2)+F(-2)的值;(2)若a=1,c=0,且|f(x)|≤1在区间(0,1]上恒成立,试求b的取值范围.18.(12分)甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所出次品数分别为,,且和的分布列为:012012试比较两名工人谁的技术水平更高.19.(12分)设集合,如果存在的子集,,同时满足如下三个条件:①;②,,两两交集为空集;③,则称集合具有性质.(Ⅰ)已知集合,请判断集合是否具有性质,并说明理由;(Ⅱ)设集合,求证:具有性质的集合有无穷多个.20.(12分)某商场销售某种商品的经验表明,该商品每日销量(单位:千克)与销售价格(单位:元千克)满足关系式,其中,为常数,已知销售价格为元/千克时,每日可售出该商品千克.(1)求的值:(2)若该商品的成本为元千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大.21.(12分)已知椭圆(a>b>0)经过点,且离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)已知A(0,b),B(a,0),点P是椭圆C上位于第三象限的动点,直线AP、BP分别将x轴、y轴于点M、N,求证:|AN|•|BM|为定值.22.(10分)高尔顿(钉)板是在一块竖起的木板上钉上一排排互相平行、水平间隔相等的圆柱形铁钉(如图),并且每一排钉子数目都比上一排多一个,一排中各个钉子恰好对准上面一排两相邻铁钉的正中央.从入口处放入一个直径略小于两颗钉子间隔的小球,当小球从两钉之间的间隙下落时,由于碰到下一排铁钉,它将以相等的可能性向左或向右落下,接着小球再通过两铁钉的间隙,又碰到下一排铁钉.如此继续下去,在最底层的5个出口处各放置一个容器接住小球.(Ⅰ)理论上,小球落入4号容器的概率是多少?(Ⅱ)一数学兴趣小组取3个小球进行试验,设其中落入4号容器的小球个数为,求的分布列与数学期望.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】分析:已知,解出a,b的值,再根据充分条件和必要条件的定义进行求解.详解:a>0,b>0且a≠1,若logab>0,a>1,b>1或0<a<1,0<b<1,∴(a-1)(b-1)>0;若(a-1)(b-1)>0,则或则a>1,b>1或0<a<1,0<b<1,∴logab>0,∴“logab>0”是“(a-1)(b-1)>0”的充分必要条件.故选C.点睛:在判断充分、必要条件时需要注意:(1)确定条件是什么、结论是什么;(2)尝试从条件推导结论,从结论推导条件;(3)确定条件是结论的什么条件.抓住“以小推大”的技巧,即小范围推得大范围,即可解决充分必要性的问题.2、B【解题分析】分析:,,三个人站成一排照相,总的基本事件为种,不站在两头,即站中间,则有种情况,从而即可得到答案.详解:,,三个人站成一排照相,总的基本事件为种,不站在两头,即站中间,则有种情况,则不站在两头的概率为.故选:B.点睛:本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.3、D【解题分析】令x=1得a=1.故原式=.的通项,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40,选D解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x,选3个提出;若第1个括号提出,从余下的括号中选2个提出,选3个提出x.故常数项==-40+80=404、B【解题分析】

由三视图可得几何体是如图所示四棱锥,根据三视图数据计算表面积即可.【题目详解】由三视图可得几何体是如图所示四棱锥,则该几何体的表面积为:.故选:B【题目点拨】本题主要考查了三视图,空间几何体的表面积计算,考查了学生的直观想象能力.5、B【解题分析】

根据三段论的推理形式依次去判断大前提和小前提,以及大小前提的关系,根据小前提不是大前提下的特殊情况,可知推理形式错误.【题目详解】大前提:“鹅吃白菜”,不是全称命题,大前提本身正确,小前提:“参议员先生也吃白菜”本身也正确,但不是大前提下的特殊情况,鹅与人不能进行类比,所以不符合三段论的推理形式,可知推理形式错误.本题正确选项:【题目点拨】本题考查三段论推理形式的判断,关键是明确大小前提的具体要求,属于基础题.6、D【解题分析】分析:根据全称命题的否定是特称命题即可得结果.详解:因为全称命题的否定是特称命题,所以命题的否定为,故选D.点睛:本题主要考查全称命题的否定,属于简单题.全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词、存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可.7、A【解题分析】

根据临界值表找到犯错误的概率,即可对各选项结论的正误进行判断.【题目详解】,因此,在犯错误的概率不超过的前提下,认为运动员受伤与不做热身运动有关,故选A.【题目点拨】本题考查独立性检验的基本思想,解题的关键就是利用临界值表找出犯错误的概率,考查分析能力,属于基础题.8、B【解题分析】

可求出集合B,然后进行交集的运算即可.【题目详解】B={x|x≤2};∴A∩B={1,2}.故选:B.【题目点拨】本题考查描述法、列举法表示集合的定义,以及交集的运算.9、B【解题分析】

根据题意,设单音的频率组成等比数列{an},设其公比为q,由等比数列的通项公式可得q的值,进而计算可得答案.【题目详解】根据题意,设单音的频率组成等比数列{an},设其公比为q,(q>0)则有a1=f,a3,则q2,解可得q,第十个单音的频率a10=a1q9=()9ff,故选:B.【题目点拨】本题考查等比数列的通项公式,关键是求出该等比数列的公比,属于基础题.10、C【解题分析】

由函数的解析式可得,再根据函数的零点的判定定理,求得函数的零点所在的区间,得到答案.【题目详解】因为是函数的零点,由,所以函数的零点所在的区间为,故选C.【题目点拨】本题主要考查了函数的零点的判定定理的应用,其中解答中熟记零点的存在定理,以及对数的运算性质是解答的关键,着重考查了推理与运算能力,属于基础题.11、C【解题分析】

由x'=12x【题目详解】由伸缩变换得x=2x',y=13即y'=3sin(2x'+【题目点拨】本题考查伸缩变换后曲线方程的求解,理解伸缩变换公式,准确代入是解题的关键,考查计算能力,属于基础题。12、C【解题分析】

在没有任何限制的情况下减去全是男生和全是女生的选法种数,可得出所求结果.【题目详解】全是男生的选法种数为种,全是女生的选法种数为种,因此,人中既有男生又有女生的不同选法为种,故选C.【题目点拨】本题考查排列组合问题,可以利用分类讨论来求解,本题的关键在于利用间接法来求解,可避免分类讨论,考查分析问题和解决问题的能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、-1【解题分析】

计算的值,找出周期,根据余数得到答案.【题目详解】依次计算得:….周期为32019除以3余数为0,故答案为-1【题目点拨】本题考查了程序框图的相关知识,计算数据找到周期规律是解题的关键.14、【解题分析】分析:椭圆上恰好有6个不同的点,使得为等腰三角形,6个不同的点有两个为椭圆短轴的两个端点,另外四个分别在第一、二、三、四象限,且上下对称左右对称,要注意分情况讨论详解:椭圆上恰好有6个不同的点,使得为等腰三角形,6个不同的点有两个为椭圆短轴的两个端点,另外四个分别在第一、二、三、四象限,且上下对称左右对称,设P在第一象限,,当时,,即,解得又因为,所以当时,,即且解得:综上或点睛:圆锥曲线中离心率范围问题是一个难点,在分析时要根据条件找到a和c之间的不等关系,有时可能要利用基本不等式、正余弦定理等其他知识综合分析.15、【解题分析】由题意,令,,则,所以,,即,当,;当,,如图所示,由勾股定理得,解得.16、【解题分析】

根据命题否定为真,结合二次函数图像列不等式,解得结果【题目详解】因为命题是假命题,所以为真所以【题目点拨】本题考查命题的否定以及一元二次不等式恒成立,考查基本分析求解能力,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)8(2)[-2,0].【解题分析】

(1)根据函数f(x)最小值是f(﹣1)=0,且c=1,求出a,b,c的值,即可求F(2)+F(﹣2)的值;(2)由于函数f(x)=ax2+bx+c(a>0,b∈R,c∈R),且a=1,c=0,所以f(x)=x2+bx,进而在满足|f(x)|≤1在区间(0,1]恒成立时,求出即可.【题目详解】(1)由已知c=1,a-b+c=0,且-=-1,解得a=1,b=2,∴f(x)=(x+1)2.∴F(x)=∴F(2)+F(-2)=(2+1)2+[-(-2+1)2]=8.(2)由a=1,c=0,得f(x)=x2+bx,从而|f(x)|≤1在区间(0,1]上恒成立等价于-1≤x2+bx≤1在区间(0,1]上恒成立,即b≤-x且b≥--x在(0,1]上恒成立.又-x的最小值为0,--x的最大值为-2.∴-2≤b≤0.故b的取值范围是[-2,0].【题目点拨】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.18、工人乙的技术水平更高【解题分析】

计算平均数与方差,即可得出结论.【题目详解】,.,说明两人出的次品数相同,可以认为他们技术水平相当,又,.,工人乙的技术比较稳定.∴可以认为工人乙的技术水平更高.【题目点拨】本题考查平均数与方差的实际意义,考查学生的计算能力,属于基础题.19、(Ⅰ)不具有,理由见解析;(Ⅱ)证明见解析【解题分析】

(Ⅰ)由条件易得集合具有性质,对集合中的进行讨论,利用题设条件得出集合不具有性质;(Ⅱ)利用反证法,假设具有性质的集合有限个,根据题设条件得出矛盾,即可证明具有性质的集合有无穷多个.【题目详解】解:(Ⅰ)具有性质,如可取;不具有性质;理由如下:对于中的元素,或者如果,那么剩下个元素,不满足条件;如果,那么剩下个元素,也不满足条件.因此,集合不具有性质.(Ⅱ)证明:假设符合条件的只有有限个,设其中元素个数最多的为.对于,由题设可知,存在,满足条件.构造如下集合由于所以易验证,,对集合满足条件,而也就是说存在比的元素个数更多的集合具有性质,与假设矛盾.因此具有性质的集合有无穷多个.【题目点拨】本题主要考查了集合的应用,涉及了反证法的应用,属于较难题.20、(1)(2)当元/千克时,商场每日销售该商品所获最大利润【解题分析】

(1)销售价格为元/千克时,每日可售出该商品千克代入函数解得.(2)求出利润的表达式,求导,根据单调性计算函数的最值.【题目详解】解:(1)当元/千克时,解得(2)设商场每日销售该商品的利润为,则,因为当时,,单调递增,当时,,单调递减所以当元/千克时,商场每日销售该商品所获最大利润【题目点拨】本题考查了函数的应用,求函数的最值,意在考查学生的计算能力和应用能力.21、(1)+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论