版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届贵州省独山县第四中学数学高二第二学期期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某超市抽取13袋袋装食用盐,对其质量(单位:g)进行统计,得到如图所示的茎叶图,若从这13袋食用盐中随机选取1袋,则该袋食用盐的质量在内的概率为()A. B. C. D.2.若,则,.设一批白炽灯的寿命(单位:小时)服从均值为1000,方差为400的正态分布,随机从这批白炽灯中选取一只,则()A.这只白炽灯的寿命在980小时到1040小时之间的概率为0.8186B.这只白炽灯的寿命在600小时到1800小时之间的概率为0.8186C.这只白炽灯的寿命在980小时到1040小时之间的概率为0.9545D.这只白炽灯的寿命在600小时到1800小时之间的概率为0.95453.下列命题为真命题的个数是()①,是无理数;②命题“∃∈R,”的否定是“∀x∈R,+1≤3x”;③命题“若,则”的逆否命题为真命题;④。A.1 B.2 C.3 D.44.抛物线的准线方程为()A. B. C. D.5.曲线上一点处的切线方程是().A. B.C. D.6.命题,,则为()A., B.,C., D.,7.已知变量x,y之间的一组数据如表:由散点图可知变量x,y具有线性相关,则y与x的回归直线必经过点()A.(2,2.5) B.(3,3) C.(4,3.5) D.(6,4.8)8.已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,这四名顾客购物后,恰好用了其中的三种结账方式,那么他们结账方式的可能情况有()种A.19 B.7 C.26 D.129.已知复数为虚数单位,是的共轭复数,则()A. B. C. D.10.已知,则“”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件11.已知集合,,则()A. B. C. D.12.先后抛掷两枚均匀的正方体骰子,骰子朝上的面的点数分别为,,则满足的概率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若实数满足,则的最小值为__________.14.函数的单调递减区间是_________15.以下四个关于圆锥曲线命题:①“曲线为椭圆”的充分不必要条件是“”;②若双曲线的离心率,且与椭圆有相同的焦点,则该双曲线的渐近线方程为;③抛物线的准线方程为;④长为6的线段的端点分别在、轴上移动,动点满足,则动点的轨迹方程为.其中正确命题的序号为_________.16.西周初数学家商高在公元前1000年发现勾股定理的一个特例:勾三,股四,弦五.此发现早于毕达哥拉斯定理五百到六百年.我们把可以构成一个直角三角形三边的一组正整数称为勾股数.现从3,4,5,6,7,8,9,10,11,12,13这11个数中随机抽取3个数,则这3个数能构成勾股数的概率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)(1)六个从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有几种?(2)把5件不同产品摆成一排,若产品与产品相邻,且产品与产品不相邻,则不同的摆法有几种?(3)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法有几种?18.(12分)已知,函数.(1)讨论函数的单调性;(2)若,且在时有极大值点,求证:.19.(12分)如图,椭圆经过点,且点到椭圆的两焦点的距离之和为.(l)求椭圆的标准方程;(2)若是椭圆上的两个点,线段的中垂线的斜率为且直线与交于点,为坐标原点,求证:三点共线.20.(12分)已知函数.(1)求的最小值;(2)证明:对一切,都有成立.21.(12分)已知椭圆:的离心率,过椭圆的上顶点和右顶点的直线与原点的距离为,(1)求椭圆的方程;(2)是否存在直线经过椭圆左焦点与椭圆交于,两点,使得以线段为直径的圆恰好经过坐标原点?若存在,求出直线方程;若不存在,请说明理由.22.(10分)已知定义在R上的函数f(x)=|x﹣m|+|x|,m∈N*,存在实数x使f(x)<2成立.(1)求实数m的值;(2)若α≥1,β≥1,f(α)+f(β)=4,求证:≥1.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
由题,分析茎叶图,找出质量在[499,501]的个数,再求其概率即可.【题目详解】这个数据中位于的个数为,故所求概率为故选B【题目点拨】本题考查了茎叶图得考查,熟悉茎叶图是解题的关键,属于基础题.2、A【解题分析】
先求出,,再求出和,即得这只白炽灯的寿命在980小时到1040小时之间的概率.【题目详解】∵,,∴,,所以,,∴.故选:A【题目点拨】本题主要考查正态分布的图像和性质,考查指定区间的概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.3、B【解题分析】
由①中,比如当时,就不成立;②中,根据存在性命题与全称命题的关系,即可判定;③中,根据四种命题的关系,即可判定;④中,根据导数的运算,即可判定,得到答案.【题目详解】对于①中,比如当时,就不成立,所以不正确;对于②中,命题“”的否定是“”,所以正确;③中,命题“若,则”为真命题,其逆否命题为真命题,所以正确;对于④中,根据导数的计算,可得,所以错误;故选B.【题目点拨】本题主要考查了命题真假的判定,其中解答中熟记全称命题与存在性命题的关系,以及四种命题的关系,导数的运算是解答的关键,着重考查了推理与运算能力,属于基础题.4、D【解题分析】根据题意,抛物线y=4x2的标准方程为x2=,其焦点在y轴正半轴上,且p=,则其准线方程为y=﹣;故选:D.5、A【解题分析】
求导利用导数的几何意义求出曲线上一点处的切线斜率,再用点斜式写出方程即可.【题目详解】由题.故.故曲线上一点处的切线方程是.化简得.故选:A【题目点拨】本题主要考查了根据导数的几何意义求解函数在某点处的切线方程.属于基础题.6、C【解题分析】
含有一个量词命题的否定方法:改变量词,否定结论.【题目详解】量词改为:,结论改为:,则,.故选:C.【题目点拨】本题考查含一个量词命题的否定,难度较易.含一个量词命题的否定方法:改量词,否结论.7、C【解题分析】
计算出,结合回归直线方程经过样本中心点,得出正确选项.【题目详解】本题主要考查线性回归方程的特征,回归直线经过样本中心点.,故选C【题目点拨】本小题主要考查回归直线方程过样本中心点,考查平均数的计算,属于基础题.8、C【解题分析】
由题意,根据甲丙丁的支付方式进行分类,根据分类计数原理即可求出.【题目详解】顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,
①当甲丙丁顾客都不选微信时,则甲有2种选择,当甲选择现金时,其余2人种,
当甲选择支付宝时,丙丁可以都选银联卡,或者其中一人选择银联卡,另一人只能选支付宝或现金,故有,故有2+5=7种,
②当甲丙丁顾客都不选支付宝时,则甲有2种选择,当甲选择现金时,其余2人种,
当甲选择微信时,丙丁可以都选银联卡,或者其中一人选择银联卡,另一人只能选微信或现金,故有,故有2+5=7种,
③当甲丙丁顾客都不选银联卡时,若有人使用现金,则,若没有人使用现金,则有种,故有6+6=12种,根据分步计数原理可得共有7+7+6+6=26种,
故选C.【题目点拨】本题考查了分步计数原理和分类计数原理,考查了转化思想,属于难题.9、C【解题分析】,选C.10、A【解题分析】
“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果.【题目详解】a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选A.【题目点拨】充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.11、B【解题分析】
先求出集合A,B,由此能求出A∩B.【题目详解】因为所以.故选:B【题目点拨】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.12、B【解题分析】
先化简,得到或.利用列举法和古典概型概率计算公式可计算出所求的概率.【题目详解】由,有,得或,则满足条件的为,,,,,,,,,所求概率为.故选B.【题目点拨】本小题主要考查对数运算,考查列举法求得古典概型概率有关问题,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】实数满足,可得,分别令,转化为两个函数与的点之间的距离的最小值,,设与直线平行且与曲线相切的切点为,则,解得,可得切点,切点到直线的距离.的最小值为,故答案为.【方法点睛】本题主要考查及数学的转化与划归思想.属于难题.转化与划归思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.本题巧妙地将最值问题转化为两点间的距离,再根据几何性质转化为点到直线的距离公式求解.14、或【解题分析】
求出导函数,然后在定义域内解不等式得减区间.【题目详解】,由,又得.∴减区间为,答也对.故答案为或.【题目点拨】本题考查导数与函数的单调性,一般由确定增区间,由确定减区间.15、③④【解题分析】
对于①,求出“曲线为椭圆”的充要条件,判断与“”关系,即得①的正误;对于②,根据已知条件求出双曲线的方程,从而求出渐近线方程,即得②的正误;对于③,把抛物线的方程化为标准式,求出准线方程,即得③的正误;对于④,设,根据,可得,代入,求出动点的轨迹方程,即得④的正误.【题目详解】对于①,“曲线为椭圆”的充要条件是“且”.所以“曲线为椭圆”的必要不充分条件是“”,故①错误;对于②,椭圆的焦点为,又双曲线的离心率,所以双曲线的方程为,所以双曲线的渐近线方程为,故②错误;对于③,抛物线的方程化为标准式,准线方程为,故③正确;对于④,设,,,即,即动点的轨迹方程为.故④正确.故答案为:③④.【题目点拨】本题考查充分必要条件、圆锥曲线的性质和求轨迹方程的方法,属于中档题.16、【解题分析】
由组合数结合古典概型求解即可【题目详解】从11个数中随机抽取3个数有种不同的方法,其中能构成勾股数的有共三种,所以,所求概率为.故答案为【题目点拨】本题考查古典概型与数学文化,考查组合问题,数据处理能力和应用意识.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)216(2)36(3)120【解题分析】分析:(1)分两种情况讨论甲在最左端时,有,当甲不在最左端时,有(种)排法,由分类计数加法原理可得结果;(2)分三步:将看成一个整体,将于剩余的2件产品全排列,有3个空位可选,根据分步计数乘法原理可得结果;(3)用表示歌舞类节目,小品类节目,相声类节目,利用枚举法可得共有种,每一种排法种的三个,两个可以交换位置,故总的排法为种.详解:(1)当甲在最左端时,有;当甲不在最左端时,乙必须在最左端,且甲也不在最右端,有(种)排法,共计(种)排法.(2)根据题意,分3步进行分析:产品与产品相邻,将看成一个整体,考虑之间的顺序,有种情况,将于剩余的2件产品全排列,有种情况,产品与产品不相邻,有3个空位可选,即有3种情况,共有种;(3)法一:用表示歌舞类节目,小品类节目,相声类节目,则可以枚举出下列10种:每一种排法种的三个,两个可以交换位置,故总的排法为种.法二:分两步进行:(1)先将3个歌曲进行全排,其排法有种;(2)将小品与相声插入将歌曲分开,若两歌舞之间只有一个其他节目,其插法有种.若两歌舞之间有两个其他节目时插法有种.所以由计数原理可得节目的排法共有(种).点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.18、(1)见解析;(2)见解析【解题分析】
(1)对求导,分,,,进行讨论,可得函数的单调性;(2)将代入,对求导,可得,再对求导,可得函数有唯一极大值点,且.可得,设,对其求导后可得.【题目详解】解:(1),又,,时,,所以可解得:函数在单调递增,在单调递减;经计算可得,时,函数在单调递减,单调递增,单调递减;时,函数在单调递减,单调递增,单调递减;时,函数在单调递减.综上:时,函数在单调递增,单调递减;时,函数在单调递减,单调递增,单调递减;时,函数在单调递减;时,函数在单调递减,单调递增,单调递减.(2)若,则,,设,则,当时,单调递减,即单调递减,当时,单调递增,即单调递增.又因为由可知:,而,且,,使得,且时,单调递增,时,单调递减,时,单调递增,所以函数有唯一极大值点,且..所以,设(),则,在单调递增,,,又因为,.【题目点拨】本题主要考查导数、函数的单调性等知识,考查方程与函数、分类与整合的数学思想,考查学生的推理论证能力与运算求解能力.19、(1)(2)见解析【解题分析】分析:(1)根据椭经过点,且点到椭圆的两焦点的距离之和为,结合性质,,列出关于、的方程组,求出、,即可得椭圆的标准方程;(2)可设直线的方程为,联立得,设点,根据韦达定理可得,所以点在直线上,又点也在直线上,进而得结果.详解:(1)因为点到椭圆的两焦点的距离之和为,所以,解得.又椭圆经过点,所以.所以.所以椭圆的标准方程为.证明:(2)因为线段的中垂线的斜率为,所以直线的斜率为-2.所以可设直线的方程为.据得.设点,,.所以,.所以,.因为,所以.所以点在直线上.又点,也在直线上,所以三点共线.点睛:用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在轴上,还是在轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程或;③找关系:根据已知条件,建立关于、、的方程组;④得方程:解方程组,将解代入所设方程,即为所求.20、(I).(Ⅱ)见解析.【解题分析】
(1)先求出函数的定义域,然后求导数,根据导函数的正负判断函数的单调性进而可求出最小值.(2)对一切,都有成立,即,结合(1)中结论可知,构造新函数,分析其最大值,可得答案.【题目详解】(1)的定义域为,的导数.令,解得;令,解得.从而在单调递减,在,单调递增.所以,当时,取得最小值.(2)若则,由(1)得:,当且仅当时,取最小值;设,则,时,,单调递增,时,,单调递减,故当时,取最大值故对一切,都有成立
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 班主任学期教学工作计划5篇
- 高三周记600字左右范文5篇
- 大学毕业生自我鉴定(13篇)
- 2024年生态农业园区车位转让与观光农业服务合同3篇
- 2024年度幼儿园教师聘用合同范本3篇
- 企业内部的安全监督培训与教育
- 2025中国电信吉林白山分公司校园招聘高频重点提升(共500题)附带答案详解
- 2025中国林业集团限公司总部招聘高频重点提升(共500题)附带答案详解
- 2025中国国际海运集装箱(集团)股份限公司招聘高频重点提升(共500题)附带答案详解
- 2025下半年陕西陕西延安市事业单位招聘工作人员375人高频重点提升(共500题)附带答案详解
- 山东省济南市2023-2024学年高二年级上册1月期末英语试题(解析版)
- 2023年全国职业院校技能大赛-声乐、器乐表演赛项规程
- 2025年高考数学复习大题题型归纳:专题07 数列中的构造问题(解析)
- 22G101三维彩色立体图集
- 从创意到创业智慧树知到期末考试答案章节答案2024年湖南师范大学
- 人教版七年级上册《生物》期末试卷(完整)
- 建筑施工安全生产治本攻坚三年行动方案(2024-2026年)
- 沥青路面养护铣刨施工技术规范.文档
- 万科物业服务工作手册
- 等保2完整版本.0介绍及建设流程
- 苏教版科学六年级上册期末测试卷含完整答案(各地真题)
评论
0/150
提交评论