2024届江苏省南京市数学高二第二学期期末复习检测试题含解析_第1页
2024届江苏省南京市数学高二第二学期期末复习检测试题含解析_第2页
2024届江苏省南京市数学高二第二学期期末复习检测试题含解析_第3页
2024届江苏省南京市数学高二第二学期期末复习检测试题含解析_第4页
2024届江苏省南京市数学高二第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省南京市数学高二第二学期期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.用反证法证明命题“关于x的方程至少有一个实根”时,要做的假设是()A.方程至多有一个实根 B.方程至少有两个实根C.方程至多有两个实根 D.方程没有实根2.复数(是虚数单位)的虚部是()A.B.C.-D.-3.下列命题是真命题的为()A.若,则 B.若,则C.若,则 D.若,则4.某班上午有五节课,计划安排语文、数学、英语、物理、化学各一节,要求语文与化学相邻,且数学不排第一节,则不同排法的种数为()A. B. C. D.5..若直线是曲线的一条切线,则实数的值为()A. B. C. D.6.古有苏秦、张仪唇枪舌剑驰骋于乱世之秋,今看我一中学子论天、论地、指点江山.现在高二某班需从甲、乙、丙、丁、戊五位同学中,选出四位同学组成重庆一中“口才季”中的一个辩论队,根据他们的文化、思维水平,分别担任一辩、二辩、三辩、四辩,其中四辩必须由甲或乙担任,而丙与丁不能担任一辩,则不同组队方式有()A.14种 B.种 C.种 D.24种7.祖暅是南北朝时代的伟大科学家,公元五世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积恒相等,那么这两个几何体的体积一定相等.设A,B为两个同高的几何体,A,B的体积不相等,A,B在等高处的截面积不恒相等.根据祖暅原理可知,p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.在Rt△ABC中,AC=1,BC=x,D是斜边AB的中点,将△BCD沿直线CD翻折,若在翻折过程中存在某个位置,使得CB⊥AD,则x的取值范围是()A. B. C. D.(2,4]9.已知,则的大小关系为()A. B. C. D.10.已知实数满足条件,且,则的取值范围是()A. B. C. D.11.现有甲、乙等5名同学排成一排照相,则甲、乙两名同学相邻,且甲不站两端的站法有()A.24种 B.36种 C.40种 D.48种12.设集合A={x|x>0},B={x|x2-5x-14<0},则A.{x|0<x<5} B.{x|2<x<7}C.{x|2<x<5} D.{x|0<x<7}二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则_____14.已知圆C1:,圆C2:,M,N分别是圆C1,C2上的动点,P为轴上的动点,则的最小值_____.15.已知函数fx=x⋅lnx,且0<x1<x2,给出下列命题:①fx1-f16.设向量,,且,则的值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,解不等式;(2)若存在满足,求实数a的取值范围.18.(12分)在直角坐标系中,直线的参数方程为(t为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为.(1)求圆C的直角坐标方程;(2)若直线过点,圆C与直线交于点,求的值.19.(12分)已知函数,().(1)当时,求的单调区间;(2)设点,是函数图象的不同两点,其中,,是否存在实数,使得,且函数在点切线的斜率为,若存在,请求出的范围;若不存在,请说明理由.20.(12分)若函数,当时,函数有极值为.(1)求函数的解析式;(2)若有个解,求实数的取值范围.21.(12分)如图为某一几何体的展开图,其中是边长为的正方形,,点及共线.(1)沿图中虚线将它们折叠起来,使四点重合,请画出其直观图,试问需要几个这样的几何体才能拼成一个棱长为的正方体?(2)设正方体的棱的中点为,求平面与平面所成二面角(锐角)的余弦值.(3)在正方体的边上是否存在一点,使得点到平面的距离为,若存在,求出的值;若不存在,请说明理由.22.(10分)在一次抗洪抢险中,准备用射击的方法引爆从桥上游漂流而下的一个巨大的汽油灌,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击相互独立,且命中概率都是,求(1)油罐被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为,求的分布列.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

结论“至少有一个”的反面是“至多有0个”即“一个也没有”.【题目详解】假设是“关于x的方程没有实根”.故选:D.【题目点拨】本题考查反证法.掌握命题的否定是解题关键.在有“至多”“至少”等词语时,其否定要注意.不能弄错.2、C【解题分析】试题分析:,虚部为。考点:复数的运算。3、A【解题分析】试题分析:B若,则,所以错误;C.若,式子不成立.所以错误;D.若,此时式子不成立.所以错误,故选择A考点:命题真假4、B【解题分析】

先用捆绑法将语文与化学看成一个整体,考虑其顺序;将这个整体与英语,物理全排列,分析排好后的空位数目,再在空位中安排数学,最后由分步计数原理计算可得.【题目详解】由题得语文和化学相邻有种顺序;将语文和化学看成整体与英语物理全排列有种顺序,排好后有4个空位,数学不在第一节有3个空位可选,则不同的排课法的种数是,故选B.【题目点拨】本题考查分步计数原理,属于典型题.5、A【解题分析】

设切点,根据导数的几何意义,在切点处的导数是切点处切线的斜率,求.【题目详解】设切点,,解得.故选A.【题目点拨】本题考查了已知切线方程求参数的问题,属于简单题型,这类问题的关键是设切点,利用切点既在切线又在曲线上,以及利用导数的几何意义共同求参数.6、D【解题分析】五人选四人有种选择方法,分类讨论:若所选四人为甲乙丙丁,有种;若所选四人为甲乙丙戊,有种;若所选四人为甲乙丁戊,有种;若所选四人为甲丙丁戊,有种;若所选四人为乙丙丁戊,有种;由加法原理:不同组队方式有种.7、A【解题分析】分析:利用祖暅原理分析判断即可.详解:设A,B为两个同高的几何体,A,B的体积不相等,A,B在等高处的截面积不恒相等.如果截面面积恒相等,那么这两个几何体的体积一定相等,根据祖暅原理可知,p是q的充分不必要条件.故选:A.点睛:本题考查满足祖暅原理的几何体的判断,是基础题,解题时要认真审查,注意空间思维能力的培养.8、A【解题分析】

由,取的中点E,翻折前,连接,则,,翻折后,在图2中,此时,及,进而得到,由此可求解得取值范围,得到答案.【题目详解】由题意得,取的中点E,翻折前,在图1中,连接,则,翻折后,在图2中,此时,因为,所以平面,所以,又为的中点,所以,所以,在中,可得①;②;③,由①②③,可得.如图3,翻折后,当与在一个平面上,与交于,且,又,所以,所以,此时,综上可得的取值范围是,故选A.【题目点拨】本题主要考查了平面图形的翻折问题,以及空间几何体的结构特征的应用,其中解答中认真审题,合理利用折叠前后图形的线面位置关系是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.9、A【解题分析】分析:由,,,可得,,则,利用做差法结合基本不等式可得结果.详解:,,则,即,综上,故选A.点睛:本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.10、D【解题分析】

如图所示,画出可行域和目标函数,根据平移得到答案.【题目详解】如图所示,画出可行域和目标函数,,则,表示直线轴截距的相反数,根据图像知:当直线过,即,时有最小值为;当直线过,即时有最大值为,故.故选:.【题目点拨】本题考查了线性规划问题,画出图像是解题的关键.11、B【解题分析】

对5个位置进行编号1,2,3,4,5,则甲只能排在第2,3,4位置,再考虑乙,再考虑其它同学.【题目详解】对5个位置进行编号1,2,3,4,5,∵甲不站两端,∴甲只能排在第2,3,4位置,(1)当甲排在第2位置时,乙只能排第1或第3共2种排法,其他3位同学有A3∴共有2×A(2)当甲排在第3位置时,乙只能排第2或第4共2种排法,其他3位同学有A3∴共有2×A(3)当甲排在第4位置时,乙只能排第3或第5共2种排法,其他3位同学有A3∴共有2×A∴排法种数N=12+12+12=36种.【题目点拨】分类与分步计数原理,在确定分类标准时,一般是从特殊元素出发,同时应注意元素的顺序问题.12、D【解题分析】试题分析:由B={x|x2-5x-14<0}={x|-2<x<7},所以考点:集合的运算.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:求出f′(1)=﹣1,再根据定积分法则计算即可.详解:∵f(x)=f'(1)x2+x+1,∴f′(x)=2f'(1)x+1,∴f′(1)=2f'(1)+1,∴f′(1)=﹣1,∴f(x)=﹣x2+x+1,∴=(﹣x3+x2+x)=.故答案为.点睛:这个题目考查了积分的应用,注意积分并不等于面积,解决积分问题的常见方法有:面积法,当被积函数为正时积分和面积相等,当被积函数为负时积分等于面积的相反数;应用公式直接找原函数的方法;利用被积函数的奇偶性得结果.14、【解题分析】

求出圆关于轴对称圆的圆心坐标,以及半径,然后求解圆与圆的圆心距减去两个圆的半径和,即可得到的最小值.【题目详解】如图所示,圆关于轴对称圆的圆心坐标,以及半径,圆的圆心坐标为,半径为,所以的最小值为圆与圆的圆心距减去两个圆的半径和,即.【题目点拨】本题主要考查了圆的对称圆的方程的求法,以及两圆的位置关系的应用,其中解答中把的最小值转化为圆与圆的圆心距减去两个圆的半径和是解答的关键,着重考查了转化思想,以及推理与运算能力,属于中档试题.15、②③【解题分析】

根据每一个问题构造相应的函数,利用导数研究函数的单调性,进而判断命题正误.【题目详解】∵f当0<x<1e时,f'(x)<0,当x>1e时,f'(x)>0,①令g(x)=f(x)-x=xlnx-x,则g'(x)=ln∴g(x)在(1,+∞)单调递增,当x2>x∴f(x2)-②令g(x)=f(x)x=lnx∵0<x1<x2③当lnx>-1时,则x>1e,∴f(x)在(∴x1f(∴x④令h(x)=f(x)+x=xlnx+x,则∴x∈(0,1e2)时,h'设x1,x2∈(0,∴x【题目点拨】证明函数不等式问题,经常与函数性质中的单调性有关.解决问题的关键在于构造什么样函数?16、【解题分析】分析:先根据向量垂直得,再根据两角差正切公式求解.详解:因为,所以,因此点睛:向量平行:,向量垂直:,向量加减:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或;(2)【解题分析】

(1)以为分界点分段讨论解不等式。(2)原不等式可化为,由绝对值不等式求得的最小值小于3,解得参数.【题目详解】当时,,当时,不等式等价于,解得,即;当时,不等式等价于,解得,即;当时,不等式等价于,解得,即.综上所述,原不等式的解集为或.由,即,得,又,,即,解得.所以。【题目点拨】对于绝对值不等式的求解,我们常用分段讨论的方法,也就是按绝对值的零点把数轴上的实数分成多段进行分段讨论,要注意分段时不重不漏,分段结果是按先交后并做运算。18、(1);(2).【解题分析】

试题分析:(1)直接利用转换关系把圆的极坐标方程转换为直角坐标方程.(2)将直线的参数方程和圆联立,整理成一元二次方程,进一步利用根和系数的关系求出结果.解析:(1)(2)证明:把得证.19、(1)的增区间为,减区间为;(2)存在实数取值范围是.【解题分析】

(1)分别研究,两种情况,先对函数求导,利用导数的方法判断其单调性,即可得出结果;(2)先由题意,得到,再根据,得到,得出,再由导数的几何意义,结合题中条件,得到,构造函数,用导数的方法研究函数的单调性,进而可得出结果.【题目详解】(1)当时,,令得,令得.当时,,所以在上是增函数。所以当时,的增区间为,减区间为;(2)由题意可得:,,所以,,令,则在单调递增,单调递减,,当时,,所以存在实数取值范围是.【题目点拨】本题主要考查导数的应用,通常需要对函数求导,用导数的方法研究单调性,最值等,属于常考题型.20、(1);(2).【解题分析】

(1)求出函数的导数,利用函数在某个点取得极值的条件,得到方程组,求得的值,从而得到函数的解析式;(2)利用函数的单调性以及极值,通过有三个不等的实数解,求得的取值范围.【题目详解】(1)因为,所以,由时,函数有极值,得,即,解得所以;(2)由(1)知,所以,所以函数在上是增函数,在上是减函数,在上是增函数,当时,有极大值;当时,有极小值,因为关于的方程有三个不等实根,所以函数的图象与直线有三个交点,则的取值范围是.【题目点拨】该题考查的是有关应用导数研究函数的问题,涉及到的知识点有函数在极值点处的导数为0,利用条件求函数解析式,利用导数研究函数的单调性与极值,将方程根的个数转化为图象交点的个数来解决,属于中档题目.21、(1)直观图见解析,3个;(2);(3)不存在.【解题分析】

(1)先还原为一个四棱锥,在正方体中观察;(2)延长与延长线交于点,连接,则为平面与平面的交线,作出二面角的平面角,计算即可;(3)假设点存在,作出点到平面的垂线段,然后计算的长,若,则点在边上,否则不在边上.【题目详解】(1)图1图1左边是所求直观图,放到图1右

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论