2024届河南省上蔡一高数学高二下期末质量检测试题含解析_第1页
2024届河南省上蔡一高数学高二下期末质量检测试题含解析_第2页
2024届河南省上蔡一高数学高二下期末质量检测试题含解析_第3页
2024届河南省上蔡一高数学高二下期末质量检测试题含解析_第4页
2024届河南省上蔡一高数学高二下期末质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省上蔡一高数学高二下期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.曲线在点处的切线与直线垂直,则点的坐标为()A. B.或 C. D.或2.函数f(x)=的图象大致为()A. B.C. D.3.已知锐角中,角所对的边分别为,若,则的取值范围是()A. B. C. D.4.若不等式|ax+2|<6的解集为(﹣1,2),则实数a等于()A.8 B.2 C.﹣4 D.﹣85.x-2xn的展开式中的第7A.16 B.18 C.20 D.226.设函数,若是函数的极大值点,则实数的取值范围是()A. B. C. D.7.下列命题①多面体的面数最少为4;②正多面体只有5种;③凸多面体是简单多面体;④一个几何体的表面,经过连续变形为球面的多面体就叫简单多面体.其中正确的个数为()A.1 B.2 C.3 D.48.A. B. C. D.9.已知,且恒成立,则实数的取值范围是()A. B. C. D.10.已知函数在区间上有最大值无最小值,则实数的取值范围()A. B. C. D.11.已知定义在R上的偶函数,在时,,若,则a的取值范围是()A.B.C.D.12.若将函数图象上所有点的横坐标伸长为原来的倍(纵坐标不变),得到函数的图象,则函数的单调递减区间为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在极坐标系中,点到直线的距离为________.14.位老师和位同学站成一排合影,要求老师相邻且不在两端的排法有______种.(用数字作答)15.若复数满足,则的取值范围是______.16.已知数列是等差数列,是等比数列,数列的前项和为.若,则数列的通项公式为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列,其前项和为;(1)计算;(2)猜想的表达式,并用数学归纳法进行证明.18.(12分)在中,角的对边分别为,且.(1)求;(2)若,求的面积.19.(12分)如图所示:在底面为直角梯形的四棱锥中,,面,E、F分别为、的中点.如果,,与底面成角.(1)求异面直线与所成角的大小(用反三角形式表示);(2)求点D到平面的距离.20.(12分)已知,命題对任意,不等式恒成立;命题存在,使得成立.(1)若为真命题,求的取值范围;(2)若为假,为真,求的取值范围.21.(12分)在极坐标系中,已知直线l的极坐标方程为.以极点为坐标原点,极轴为x轴正半轴建立直角坐标系,曲线C的参数方程为(m为参数).(1)求直线l的直角坐标方程和曲线C的普通方程;(2)已知点,直线l和曲线C相交于,两点,求.22.(10分)已知数列的前项和,且().(1)若数列是等比数列,求的值;(2)求数列的通项公式。

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】试题分析:设,或,点的坐标为或考点:导数的几何意义2、D【解题分析】

根据函数为非偶函数可排除两个选项,再根据特殊值可区分剩余两个选项.【题目详解】因为f(-x)=≠f(x)知f(x)的图象不关于y轴对称,排除选项B,C.又f(2)==-<0.排除A,故选D.【题目点拨】本题主要考查了函数图象的对称性及特值法区分函数图象,属于中档题.3、B【解题分析】

利用余弦定理化简后可得,再利用正弦定理把边角关系化为角的三角函数的关系式,从而得到,因此,结合的范围可得所求的取值范围.【题目详解】,因为为锐角三角形,所以,,,故,选B.【题目点拨】在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件,如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件,如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.4、C【解题分析】

利用不等式的解集和对应方程的根的关系来求解.【题目详解】因为的解集为,所以和是方程的根,所以解得.故选:C.【题目点拨】本题主要考查绝对值不等式的解法,明确不等式的解集和对应方程的关系是求解的关键,侧重考查数学运算的核心素养.5、B【解题分析】

利用通项公式即可得出.【题目详解】x-2xn的展开式的第7项令n2-9=0=0,解得n=故选:B.【题目点拨】本题考查了二项式定理的应用、方程思想,考查了推理能力与计算能力,属于中档题.6、A【解题分析】分析:的定义域为,由得所以能求出的取值范围.详解:的定义域为,由得

所以.

①若,当时,,此时单调递增;

当时,,此时单调递减.所以是函数的极大值点.

满足题意,所以成立.

②若,由,得,当时,即,此时

当时,,此时单调递增;

当时,,此时单调递减.所以是函数的极大值点.

满足题意,所以成立..

如果函数取得极小值,不成立;

②若,由,得.

因为是f(x)的极大值点,成立;

综合①②:的取值范围是.

故选:A.点睛:本题考查函数的单调性、极值等知识点的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.7、D【解题分析】

根据多面体的定义判断.【题目详解】正多面体只有正四、六、八、十二、二十,所以①②正确.表面经过连续变形为球面的多面体就叫简单多面体.棱柱、棱锥、正多面体等一切凸多面体都是简单多面体.所以③④正确.故:①②③④都正确【题目点拨】根据多面体的定义判断.8、D【解题分析】分析:根据公式,可直接计算得详解:,故选D.点睛:复数题是每年高考的必考内容,一般以选择或填空形式出现,属简单得分题,高考中复数主要考查的内容有:复数的分类、复数的几何意义、共轭复数,复数的模及复数的乘除运算,在解决此类问题时,注意避免忽略中的负号导致出错.9、D【解题分析】

由题意可构造函数,由在上恒成立,分离参数并构造新的函数,利用导数判断其单调性并求得最小值,即可求出的取值范围.【题目详解】由,得恒成立,令,即,,则在上单调递减,所以在上恒成立,当时,成立,当时,等价于,令,则,所以在上单调递减,,即故选:D【题目点拨】本题主要考查不等式恒成立问题的解法,考查导数和构造函数的应用,考查学生分析转化能力和计算能力,属于中档题.10、C【解题分析】

先求导,得到函数的单调区间,函数在区间上有最大值无最小值,即导数的零点在上,计算得到答案.【题目详解】设函数在区间上有最大值无最小值即在有零点,且满足:即故答案选C【题目点拨】本题考查了函数的最大值和最小值问题,将最值问题转为二次函数的零点问题是解题的关键.11、B【解题分析】试题分析:当时,,,∴函数在上为增函数,∵函数是定义在R上的偶函数,∴,∴,∴,即.考点:函数的单调性、奇偶性、解不等式.12、A【解题分析】

利用三角恒等变换化简的解析式,再根据的图象变换规律求得的解析式,再利用余弦函数的单调性,求得函数的单调递减区间.【题目详解】解:将函数的图象上所有的横坐标伸长为原来的倍(纵坐标不变),得到函数的图象,令,求得,可得的单调递减区间为.故选:A.【题目点拨】本题主要考查三角恒等变换,余弦函数的单调性,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、3【解题分析】

将A和直线化成直角坐标系下点和方程,再利用点到直线的距离公式计算即可.【题目详解】由已知,在直角坐标系下,,直线方程为,所以A到直线的距离为.故答案为:3【题目点拨】本题考查极坐标方程与普通方程的互化,点到直线的距离,考查学生的运算求解能力,是一道容易题.14、24【解题分析】

根据题意,分2步进行分析:第一步,将3位同学全排列,排好后中间有2个空位可用;第二步,将2位老师看成一个整体,安排在2个空位中,由分步计数原理计算可得答案.【题目详解】解:根据题意,分2步进行分析:第一步,将3位同学全排列,有种排法,排好后中间有2个空位可用;第二步,将2位老师看成一个整体,安排在2个空位中,有种安排方法.则有种排法.故答案为:24.【题目点拨】本题考查排列组合及简单的计数问题.对于不相邻的问题,一般采用插空法;对于相邻的问题,一般采用捆绑法.15、【解题分析】

根据复数的模的几何意义,结合的几何意义,设出圆上任意一点坐标,利用两点间距离公式列式,化简求得的取值范围.【题目详解】由于复数满足,故复数对应的点在圆心为原点,半径为的圆上,设圆上任意一点的坐标为.表示圆上的点到和两点距离之和,即①,①式平方得,由于,所以,所以,所以,所以.故答案为:.【题目点拨】本小题主要考查复数模的几何意义,考查运算求解能力,属于中档题.16、【解题分析】

先设数列的前项和为,先令,得出求出的值,再令,得出,结合的值和的通项的结构得出数列的通项公式。【题目详解】设数列的前项和为,则.当时,,,;当时,.也适合上式,.由于数列是等差数列,则是关于的一次函数,且数列是等比数列,,可设,则,,因此,。故答案为:。【题目点拨】本题考查利用前项和公式求数列的通项,一般利用作差法求解,即,在计算时要对是否满足通项进行检验,考查计算能力,属于中等题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2),证明见解析【解题分析】

(1)根据已知条件,计算出的值;(2)由(1)猜想,根据数学归纳法证明方法,对猜想进行证明.【题目详解】(1)计算,,,(2)猜想.证明:①当时,左边,右边,猜想成立.②假设猜想成立.即成立,那么当时,,而,故当时,猜想也成立.由①②可知,对于,猜想都成立.【题目点拨】本小题主要考查合情推理,考查利用数学归纳法证明和数列有关问题,属于中档题.18、(1)(2)【解题分析】

(1)由正弦定理把已知角的关系转化为边的关系,再由余弦定理求得,从而求得;(2)由(1)及代入可解得,再由求得面积.【题目详解】解:(1)由及正弦定理得:,∴,由余弦定理得:,∵,∴(2)由,及,得,∴∴∴的面积为.【题目点拨】本题考查正弦定理和余弦定理,考查三角形面积公式,解题关键是由正弦定理把已知角的关系转化为边的关系.19、(1);(2)【解题分析】

(1)先确定与底面所成角,计算SA,再建立空间直角坐标系,利用向量数量积求异面直线与所成角;(2)先求平面的一个法向量,再利用向量投影求点D到平面的距离.【题目详解】(1)因为面,所以是与底面所成角,即,因为,以为坐标原点,所在直线分别为x,y,z轴建立空间直角坐标系,则,从而,,因此所以异面直线与所成角为,(2)设平面的一个法向量为,因为,所以令,从而点D到平面的距离为【题目点拨】本题考查线面角以及利用向量求线线角与点面距,考查综合分析求解能力,属中档题.20、(1);(2)【解题分析】

(1)由题得,解不等式即得解;(2)先由题得,由题得,中一个是真命题,一个是假命题,列出不等式组,解不等式组得解.【题目详解】(1)对任意,不等式恒成立,当,由对数函数的性质可知当时,的最小值为,,解得.因此,若为真命题时,的取值范围是.(2)存在,使得成立,.命题为真时,,且为假,或为真,,中一个是真命题,一个是假命题.当真假时,则解得;当假真时,,即.综上所述,的取值范围为.【题目点拨】本题主要考查指数对数函数的性质和不等式的恒成立问题的解法,考查复合命题的真假和存在性问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.21、(1),;(2)44【解题分析】分析:(1)首先将直线的极坐标方程展开后,利用极坐标和直角坐标的转化公式,可求得直线的直角坐标方程.利用代入消元法消去可求得曲线的普通方程.(2)利用直线参数的几何意义,借助根与系数关系,可求得的值.详解:(1)由得,即,∴的直角坐标方程,由,得,代入得,即,所以的普通方程:;(2)在上,的参数方程为(为参数),将的参数方程代入得:,即,∴,∴.点睛:本小题主要考查极坐标和直角坐标相互转化,考查参数方程和普通方程互划,考查利用直线参数的几何意义解题.属于基础题.22、(1)1;(2)()【解题分析】分析:(1)由可得,∴a2=3,a3=7,依题意,得(3+t)2=(1+t)(7

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论