2024届重庆市北碚区西南大附属中学数学九年级第一学期期末复习检测模拟试题含解析_第1页
2024届重庆市北碚区西南大附属中学数学九年级第一学期期末复习检测模拟试题含解析_第2页
2024届重庆市北碚区西南大附属中学数学九年级第一学期期末复习检测模拟试题含解析_第3页
2024届重庆市北碚区西南大附属中学数学九年级第一学期期末复习检测模拟试题含解析_第4页
2024届重庆市北碚区西南大附属中学数学九年级第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届重庆市北碚区西南大附属中学数学九年级第一学期期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.通过对《一元二次方程》全章的学习,同学们掌握了一元二次方程的三种解法:配方法、公式法、因式分解法,其实,每种解法都是把一个一元二次方程转化为两个一元一次方程来解,体现的基本思想是()A.转化 B.整体思想 C.降次 D.消元2.圆的直径是13cm,如果圆心与直线上某一点的距离是6.5cm,那么该直线和圆的位置关系是()A.相离 B.相切 C.相交 D.相交或相切3.学生作业本每页大约为7.5忽米(1厘米=1000忽米),请用科学计数法将7.5忽米记为米,则正确的记法为()A.7.5×105米 B.0.75×106米 C.0.75×10-4米 D.4.已知,那么下列等式中,不一定正确的是()A. B. C. D.5.如图,BC是⊙O的直径,点A、D在⊙O上,若∠ADC=48°,则∠ACB等于()度.A.42 B.48 C.46 D.506.下列二次函数的开口方向一定向上的是()A.y=-3x2-1 B.y=-x2+1 C.y=x2+3 D.y=-x2-57.如图,点M在某反比例函数的图象上,且点M的横坐标为,若点和在该反比例函数的图象上,则与的大小关系为()A. B. C. D.无法确定8.在一个箱子里放有1个自球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是()A.1 B. C. D.9.不等式组的整数解有()A.4个 B.3个 C.2个 D.1个10.如图,在平直角坐标系中,过轴正半轴上任意一点作轴的平行线,分别交函数、的图象于点、点.若是轴上任意一点,则的面积为()A.9 B.6 C. D.311.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,若旋转角为20°,则∠1为()A.110° B.120° C.150° D.160°12.如图,将△ABC放在每个小正方形的边长都为1的网格中,点A,B,C均在格点上,则tanA的值是()A. B. C.2 D.二、填空题(每题4分,共24分)13.已知扇形的弧长为2π,圆心角为60°,则它的半径为________.14.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x,乙立方体朝上一面上的数字为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y=上的概率为____.15.已知,二次函数的图象如图所示,当y<0时,x的取值范围是________.16.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点A,B向x轴作垂线,垂足分别为D,C,若矩形ABCD的面积是9,则k的值为_____.17.已知点A(3,y1)、B(2,y2)都在抛物线y=﹣(x+1)2+2上,则y1与y2的大小关系是_____.18.如图,已知矩形ABCD的顶点A、D分别落在x轴、y轴,OD=2OA=6,AD:AB=3:1.则点B的坐标是_____.三、解答题(共78分)19.(8分)如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上一点,且BD=BA,求tan∠ADC的值.20.(8分)如图,在中,,点是边上的动点(不与重合),点在边上,并且满足.(1)求证:;(2)若的长为,请用含的代数式表示的长;(3)当(2)中的最短时,求的面积.21.(8分)在平面直角坐标系中,抛物线经过点,.(1)求这条抛物线所对应的函数表达式.(2)求随的增大而减小时的取值范围.22.(10分)如图1,直线y=2x+2分别交x轴、y轴于点A、B,点C为x轴正半轴上的点,点D从点C处出发,沿线段CB匀速运动至点B处停止,过点D作DE⊥BC,交x轴于点E,点C′是点C关于直线DE的对称点,连接EC′,若△DEC′与△BOC的重叠部分面积为S,点D的运动时间为t(秒),S与t的函数图象如图2所示.(1)VD,C坐标为;(2)图2中,m=,n=,k=.(3)求出S与t之间的函数关系式(不必写自变量t的取值范围).23.(10分)如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,直线AB与反比例函数y=(m>0)在第一象限的图象交于点C、点D,其中点C的坐标为(1,8),点D的坐标为(4,n).(1)分别求m、n的值;(2)连接OD,求△ADO的面积.24.(10分)为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A级:非常满意:B级满意;C级:基本满意:D级:不满意),并将调查结果绘制成如两幅不完整的统计图,请根据统计图中的信息解决下列问题:(1)本次抽样调查测试的建档立卡贫困户的总户数是;(2)图①中,∠α的度数是,并把图②条形统计图补充完整;(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的户数约为多少户?25.(12分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.26.有四张反面完全相同的纸牌,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.(1)从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是.(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回.再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据“每种解法都是把一个一元二次方程转化为两个一元一次方程来解”进行判断即可.【详解】每种解法都是把一个一元二次方程转化为两个一元一次方程来解,也就是“降次”,故选:C.【点睛】本题考查一元二次方程解法的理解,读懂题意是关键.2、D【分析】比较圆心到直线距离与圆半径的大小关系,进行判断即可.【详解】圆的直径是13cm,故半径为6.5cm.圆心与直线上某一点的距离是6.5cm,那么圆心到直线的距离可能等于6.5cm也可能小于6.5cm,因此直线与圆相切或相交.故选D.【点睛】本题主要考查直线与圆的位置关系,需注意圆的半径为6.5cm,那么圆心与直线上某一点的距离是6.5cm是指圆心到直线的距离可能等于6.5cm也可能小于6.5cm.3、D【分析】小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:7.5忽米用科学记数法表示7.5×10-5米.

故选D.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4、B【分析】根据比例的性质作答.【详解】A、由比例的性质得到3y=5x,故本选项不符合题意.

B、根据比例的性质得到x+y=8k(k是正整数),故本选项符合题意.

C、根据合比性质得到,故本选项不符合题意.

D、根据等比性质得到,故本选项不符合题意.

故选:B.【点睛】此题考查了比例的性质,解题关键在于需要掌握内项之积等于外项之积、合比性质和等比性质.5、A【分析】连接AB,由圆周角定理得出∠BAC=90°,∠B=∠ADC=48°,再由直角三角形的性质即可得出答案.【详解】解:连接AB,如图所示:∵BC是⊙O的直径,∴∠BAC=90°,∵∠B=∠ADC=48°,∴∠ACB=90°-∠B=42°;故选:A.【点睛】本题考查了圆周角定理以及直角三角形的性质;熟练掌握圆周角定理是解题的关键.6、C【解析】根据二次函数图象的开口方向与二次项系数的关系逐一判断即可.【详解】解:A.y=-3x2-1中,﹣3<0,二次函数图象的开口向下,故A不符合题意;B.y=-x2+1中,-<0,二次函数图象的开口向下,故B不符合题意;C.y=x2+3中,>0,二次函数图象的开口向上,故C符合题意;D.y=-x2-5中,-1<0,二次函数图象的开口向下,故D不符合题意;故选:C.【点睛】此题考查的是判断二次函数图像的开口方向,掌握二次函数图象的开口方向与二次项系数的关系是解决此题的关键.7、A【分析】反比例函数在第一象限的一支y随x的增大而减小,只需判断a与2a的大小便可得出答案.【详解】∵a<2a又∵反比例函数在第一象限的一支y随x的增大而减小∴故选:A.【点睛】本题考查比较大小,需要用到反比例函数y与x的增减变化,本题直接读图即可得出.8、C【解析】结合题意求得箱子中球的总个数,再根据概率公式即可求得答案.【详解】依题可得,箱子中一共有球:(个),∴从箱子中任意摸出一个球,是白球的概率.故答案为:C.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.9、B【分析】先解出不等式组的解集,然后再把所有符合条件的整数解列举出来即可.【详解】解:解得,解得,∴不等式组的解集为:,整数解有1、2、3共3个,故选:B.【点睛】本题考查了一元一次不等式组的的解法,先分别求出各不等式的解集,注意化系数为1时,如果两边同时除以一个负数,不等号的方向要改变;再求各个不等式解集的公共部分,必要时,可用数轴来求公共解集.10、C【分析】连接OA、OB,利用k的几何意义即得答案.【详解】解:连接OA、OB,如图,因为AB⊥x轴,则AB∥y轴,,,,所以.故选C.【点睛】本题考查了反比例函数系数k的几何意义,属于常考题型,熟知k的几何意义是关键.11、A【解析】设C′D′与BC交于点E,如图所示:∵旋转角为20°,∴∠DAD′=20°,∴∠BAD′=90°−∠DAD′=70°.∵∠BAD′+∠B+∠BED′+∠D′=360°,∴∠BED′=360°−70°−90°−90°=11°,∴∠1=∠BED′=110°.故选A.12、D【解析】首先构造以A为锐角的直角三角形,然后利用正切的定义即可求解.【详解】连接BD,则BD=,AD=2,则tanA===.故选D.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边,构造直角三角形是本题的关键.二、填空题(每题4分,共24分)13、6.【解析】分析:设扇形的半径为r,根据扇形的面积公式及扇形的面积列出方程,求解即可.详解:设扇形的半径为r,根据题意得:60πr解得:r=6故答案为6.点睛:此题考查弧长公式,关键是根据弧长公式解答.14、【分析】列表得出所有等可能的情况数,找出P坐标落在双曲线上的情况数,即可求出所求的概率.【详解】解:列表得:所有等可能的情况数有36种,其中P(x,y)落在双曲线y=上的情况有4种,则P==.故答案为【点睛】本题考查列表法与树状图法;反比例函数图象上点的坐标特征,掌握概率的求法是解题关键.15、【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(1,0),故当y<0时,x的取值范围是:-1<x<1.故答案为:-1<x<1.【点睛】此题主要考查了抛物线与x轴的交点,正确数形结合分析是解题关键.16、1.【分析】过点A作AE⊥y轴于点E,首先得出矩形EODA的面积为:4,利用矩形ABCD的面积是9,则矩形EOCB的面积为:4+9=1,再利用xy=k求出即可.【详解】过点A作AE⊥y轴于点E,∵点A在双曲线y=上,∴矩形EODA的面积为:4,∵矩形ABCD的面积是9,∴矩形EOCB的面积为:4+9=1,则k的值为:xy=k=1.故答案为1.【点睛】此题主要考查了反比例函数关系k的几何意义,得出矩形EOCB的面积是解题关键.17、y1<y1【分析】先求得函数的对称轴为,再判断、在对称轴右侧,从而判断出与的大小关系.【详解】∵函数y=﹣(x+1)1+1的对称轴为,∴、在对称轴右侧,∵抛物线开口向下,在对称轴右侧y随x的增大而减小,且3>1,∴y1<y1.故答案为:y1<y1.【点睛】本题考查了待定系数法二次函数图象上点的特征,利用已知解析式得出对称轴进而利用二次函数增减性得出答案是解题关键.18、(5,1)【分析】过B作BE⊥x轴于E,根据矩形的性质得到∠DAB=90°,根据余角的性质得到∠ADO=∠BAE,根据相似三角形的性质得到AE=OD=2,DE=OA=1,于是得到结论.【详解】解:过B作BE⊥x轴于E,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADO+∠OAD=∠OAD+∠BAE=90°,∴∠ADO=∠BAE,∴△OAD∽△EBA,∴OD:AE=OA:BE=AD:AB∵OD=2OA=6,∴OA=3∵AD:AB=3:1,∴AE=OD=2,BE=OA=1,∴OE=3+2=5,∴B(5,1)故答案为:(5,1)【点睛】本题考查了矩形的性质,相似三角形的判定和性质,坐标与图形性质,正确的作出辅助线并证明△OAD∽△EBA是解题的关键.三、解答题(共78分)19、2﹣.【分析】设AC=m,解直角三角形求出AB,BC,BD即可解决问题.【详解】设AC=m,在Rt△ABC中,∵∠C=90°,∠ABC=30°,∴AB=2AC=2m,BC=AC=m,∴BD=AB=2m,DC=2m+m,∴tan∠ADC===.【点睛】本题考查求正切值,熟记正切的定义,解出直角三角形的边长是解题的关键.20、(1)见解析;(2);(3)【分析】(1)由等腰三角形的性质可得,然后根据三角形的外角性质可得,进而可证得结论;(2)根据相似三角形的对应边成比例可得CE与x的关系,进一步即可得出结果;(3)根据(2)题的结果,利用二次函数的性质可得AE最短时x的值,即BD的长,进而可得AD的长和△ADC的面积,进一步利用所求三角形的面积与△ADC的面积之比等于AE与AC之比即得答案.【详解】解:(1)∵,∴,∵,∴,∵,∴,∴;(2)∵,∴,∴,∴,∴;(3)∵,∴时,的值最小为6.4,此时,∵,∴,∴,∴,∵,即,∴.【点睛】本题考查了相似三角形的判定和性质、二次函数的性质、勾股定理、等腰三角形的性质和三角形的面积等知识,属于中档题型,熟练掌握相似三角形的判定和性质与二次函数的性质是解题的关键.21、(1),(2)随的增大而减小时.【解析】(1)把,代入解析式,解方程组求出a、b的值即可;(2)根据(1)中所得解析式可得对称轴,a>0,在对称轴左侧y随的增大而减小根据二次函数的性质即可得答案.【详解】(1)∵抛物线经过点,.∴解得∴这条抛物线所对应的函数表达式为.(2)∵抛物线的对称轴为直线,∵,∴图象开口向上,∴y随的增大而减小时x<1.【点睛】本题考查待定系数法确定二次函数解析式及二次函数的性质,a>0,开口向上,在对称轴左侧y随的增大而减小,a<0,开口向下,在对称轴右侧y随的增大而减小,熟练掌握二次函数的图像和性质是解题关键.22、(1)点D的运动速度为1单位长度/秒,点C坐标为(4,0).(2);;.(3)①当点C′在线段BC上时,S=t2;②当点C′在CB的延长线上,S=−t2+t−;③当点E在x轴负半轴,S=t2−4t+1.【分析】(1)根据直线的解析式先找出点B的坐标,结合图象可知当t=时,点C′与点B重合,通过三角形的面积公式可求出CE的长度,结合勾股定理可得出OE的长度,由OC=OE+EC可得出OC的长度,即得出C点的坐标,再由勾股定理得出BC的长度,根据CD=BC,结合速度=路程÷时间即可得出结论;(2)结合D点的运动以及面积S关于时间t的函数图象的拐点,即可得知当“当t=k时,点D与点B重合,当t=m时,点E和点O重合”,结合∠C的正余弦值通过解直角三角形即可得出m、k的值,再由三角形的面积公式即可得出n的值;(3)随着D点的运动,按△DEC′与△BOC的重叠部分形状分三种情况考虑:①通过解直角三角形以及三角形的面积公式即可得出此种情况下S关于t的函数关系式;②由重合部分的面积=S△CDE−S△BC′F,通过解直角三角形得出两个三角形的各边长,结合三角形的面积公式即可得出结论;③通过边与边的关系以及解直角三角形找出BD和DF的值,结合三角形的面积公式即可得出结论.【详解】(1)令x=0,则y=2,即点B坐标为(0,2),∴OB=2.当t=时,B和C′点重合,如图1所示,此时S=×CE•OB=,∴CE=,∴BE=.∵OB=2,∴OE=,∴OC=OE+EC=+=4,BC=,CD=,÷=1(单位长度/秒),∴点D的运动速度为1单位长度/秒,点C坐标为(4,0).故答案为:1单位长度/秒;(4,0);(2)根据图象可知:当t=k时,点D与点B重合,此时k==2;当t=m时,点E和点O重合,如图2所示.sin∠C===,cos∠C=,OD=OC•sin∠C=4×=,CD=OC•cos∠C=4×=.∴m==,n=BD•OD=×(2−)×=.故答案为:;;2.(3)随着D点的运动,按△DEC′与△BOC的重叠部分形状分三种情况考虑:①当点C′在线段BC上时,如图3所示.此时CD=t,CC′=2t,0<CC′≤BC,∴0<t≤.∵tan∠C=,∴DE=CD•tan∠C=t,此时S=CD•DE=t2;②当点C′在CB的延长线上,点E在线段OC上时,如图4所示.此时CD=t,BC′=2t−2,DE=CD•tan∠C=t,CE==t,OE=OC−CE=4−t,∵,即,解得:<t≤.由(1)可知tan∠OEF==,∴OF=OE•tan∠OEF=t,BF=OB−OF=,∴FM=BF•cos∠C=.此时S=CD•DE−BC′•FM=−;③当点E在x轴负半轴,点D在线段BC上时,如图5所示.此时CD=t,BD=BC−CD=2−t,CE=t,DF=,∵,即,∴<t≤2.此时S=BD•DF=×2×(2−t)2=t2−4t+1.综上,当点C′在线段BC上时,S=t2;当点C′在CB的延长线上,S=−t2+t−;当点E在x轴负半轴,S=t2−4t+1.【点睛】本题考查了勾股定理、解直角三角形以及三角形的面积公式,解题的关键是:(1)求出BC、OC的长度;(2)根据图象能够了解当t=m和t=k时,点DE的位置;(3)分三种情况求出S关于t的函数关系式.本题属于中档题,(1)(2)难度不大;(3)需要画出图形,利用数形结合,通过解直角三角形以及三角形的面积公式找出S关于t的函数解析式.23、(1)m=8,n=1.(1)10【分析】(1)把代入解析式可求得m的值,再把点D(4,n)代入即可求得答案;(1)用待定系数法求得直线AB的解析式,继而求得点A的坐标,再利用三角形面积公式即可求得答案.【详解】(1)∵反比例函数(>0)在第一象限的图象交于点,∴,∴,∴函数解析式为,将代入得,.(1)设直线AB的解析式为,由题意得,解得:,∴直线AB的函数解析式为,令,则,∴,∴.【点睛】本题考查了用待定法求函数解析式及三角形面积公式,熟练掌握待定法求函数解析式是解题的关键.24、(1)60户;(2)54°;(3)1500户.【分析】(1)由B级别户数及其对应百分比可得答案;

(2)求出A级对应百分比可得∠α的度数,再求出C级户数即可把图2条形统计图补充完整;

(3)利用样本估计总体思想求解可得.【详解】解:(1)由图表信息可知本次抽样调查测试的建档立卡贫困户的总户数=21÷35%=60(户)故答案为:60户;(2)图1中,∠α的度数=×360°=54°;C级户数为:60﹣9﹣21﹣9=21(户),补全条形统计图如图2所示:故答案为:54°;(3)估计非常满意的人数约为×10000=1500(户).【点睛】本题考查的是条形统计图和扇形统计图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论