




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省扶余市一中2024届高二数学第二学期期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为虚数单位,则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.如图,已知棱长为1的正方体中,是的中点,则直线与平面所成角的正弦值是()A. B. C. D.3.如图为某几何体的三视图,则该几何体的体积为()A. B. C. D.4.已知函数的图像在点处的切线方程是,若,则()A. B. C. D.5.已知函数f(x)=xex2+axeA.1 B.-1 C.a D.-a6.复数,则的共轭复数在复平面内对应点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.设等差数列{an}满足3a8=5a15,且A.S23 B.S24 C.S8.给出定义:若函数在D上可导,即存在,且导函数在D上也可导,则称在D上存在二阶导函数,记,若在D上恒成立,则称在D上为凸函数.以下四个函数在上不是凸函数的是()A. B.C. D.9.已知双曲线的实轴长为16,左焦点分别为,是双曲线的一条渐近线上的点,且,为坐标原点,若,则双曲线的离心率为()A. B. C. D.10.下列四个结论中正确的个数是(1)对于命题使得,则都有;(2)已知,则(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为;(4)“”是“”的充分不必要条件.A.1 B.2 C.3 D.411.若函数为奇函数,且在上为减函数,则的一个值为()A. B. C. D.12.已知某企业上半年前5个月产品广告投入与利润额统计如下:月份12345广告投入(万元)9.59.39.18.99.7利润(万元)9289898793由此所得回归方程为,若6月份广告投入10(万元)估计所获利润为()A.97万元 B.96.5万元 C.95.25万元 D.97.25万元二、填空题:本题共4小题,每小题5分,共20分。13.如图1,在棱长为的正方体中,P、Q是对角线上的点,若,则三棱锥的体积为________14.若双曲线的一个焦点是,则该双曲线的渐近线方程是______15.不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能排在一起,则不同的排法种数共有;(用数字作答)16.从集合的子集中选出个不同的子集,需同时满足以下两个条件:①、都至少属于其中一个集合;②对选出的两个子集、,必有或.那么,共有______种不同的选法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:月份x12345y(万盒)44566(1)该同学为了求出关于的线性回归方程,根据表中数据已经正确计算出=0.6,试求出的值,并估计该厂6月份生产的甲胶囊产量数;(2)若某药店现有该制药厂今年二月份生产的甲胶囊4盒和三月份生产的甲胶囊5盒,小红同学从中随机购买了3盒甲胶囊,后经了解发现该制药厂今年二月份生产的所有甲胶囊均存在质量问题,记小红同学所购买的3盒甲胶囊中存在质量问题的盒数为ξ,求ξ的分布列和数学期望.18.(12分)已知函数.(1)讨论在上的单调性;(2)若对恒成立,求正整数的最小值.19.(12分)已知满足,.(1)求,并猜想的表达式;(2)用数学归纳法证明对的猜想.20.(12分)已知函数.(1)当时,求不等式的解集;(2)若的解集为R,求的取值范围.21.(12分)某品牌新款夏装即将上市,为了对新款夏装进行合理定价,在该地区的三家连锁店各进行了两天试销售,得到如下数据:连锁店A店B店C店售价x(元)808682888490销量y(元)887885758266(1)分别以三家连锁店的平均售价与平均销量为散点,如A店对应的散点为,求出售价与销量的回归直线方程;(2)在大量投入市场后,销量与单价仍然服从(1)中的关系,且该夏装成本价为40元/件,为使该新夏装在销售上获得最大利润,该款夏装的单价应定为多少元?(保留整数)附:,.22.(10分)将正整数排成如图的三角形数阵,记第行的个数之和为.(1)设,计算,,的值,并猜想的表达式;(2)用数学归纳法证明(1)的猜想.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,从而可得结果.详解::由于复数,,在复平面的对应点坐标为,在第一象限,故选A.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2、D【解题分析】
根据与平面的关系,先找到直线与平面的夹角,然后通过勾股定理求得各边长,即可求得夹角的正弦值。【题目详解】连接、相交于点M,连接EM、AM因为EM⊥AB,EM⊥BC1所以EM⊥平面则∠EAM即为直线与平面所成的角所以所以所以选D【题目点拨】本题考查了空间几何体线面的夹角关系,主要是找到直线与平面的夹角,再根据各长度求正弦值,属于中档题。3、A【解题分析】
根据三视图得出几何体为一个圆柱和一个长方体组合而成,由此求得几何体的体积.【题目详解】由三视图可知,该几何体由圆柱和长方体组合而成,故体积为,故选A.【题目点拨】本小题主要考查三视图还原原图,考查圆柱、长方体体积计算,属于基础题.4、C【解题分析】
根据切线方程计算,,再计算的导数,将2代入得到答案.【题目详解】函数的图像在点处的切线方程是故答案选C【题目点拨】本题考查了切线方程,求函数的导数,意在考查学生的计算能力.5、A【解题分析】
令xex=t,构造g(x)=xex,要使函数f(x)=xex2+axex-a有三个不同的零点x1,x2,x【题目详解】令xex=t,构造g(x)=xex,求导得g'(x)=故g(x)在-∞,1上单调递增,在1,+∞上单调递减,且x<0时,g(x)<0,x>0时,g(x)>0,g(x)max=g(1)=1e,可画出函数g(x)的图象(见下图),要使函数f(x)=xex2+axex-a有三个不同的零点x1,x若a>0,即t1+t2=-a<0t1故1-x若a<-4,即t1+t2=-a>4t1⋅故选A.【题目点拨】解决函数零点问题,常常利用数形结合、等价转化等数学思想.6、A【解题分析】
化简,写出共轭复数即可根据复平面的定义选出答案.【题目详解】,在复平面内对应点为故选A【题目点拨】本题考查复数,属于基础题.7、C【解题分析】因a8=a1+7d,a15=a1+14d,故由题设3a8=5a158、D【解题分析】
对A,B,C,D四个选项逐个进行二次求导,判断其在上的符号即可得选项.【题目详解】若,则,在上,恒有;若,则,在上,恒有;若,则,在上,恒有;若,则.在上,恒有,故选D.【题目点拨】本题主要考查函数的求导公式,充分理解凸函数的概念是解题的关键,属基础题.9、A【解题分析】由于焦点到渐近线的距离为,故,依题意有,所以离心率为.【题目点拨】本小题主要考查直线和双曲线的位置关系,考查双曲线渐近线的几何性质,考查三角形的面积公式和双曲线离心率的求法.设双曲线的焦点为,双曲线的渐近线为,故双曲线焦点到渐近线的距离为,故焦点到渐近线的距离为.10、C【解题分析】
由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定.【题目详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题使得,则都有,是错误的;(2)中,已知,正态分布曲线的性质,可知其对称轴的方程为,所以是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为是正确;(4)中,当时,可得成立,当时,只需满足,所以“”是“”成立的充分不必要条件.【题目点拨】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.11、D【解题分析】由题意得,∵函数为奇函数,∴,故.当时,,在上为增函数,不合题意.当时,,在上为减函数,符合题意.选D.12、C【解题分析】
首先求出的平均数,将样本中心点代入回归方程中求出的值,然后写出回归方程,然后将代入求解即可【题目详解】代入到回归方程为,解得将代入,解得故选【题目点拨】本题是一道关于线性回归方程的题目,解答本题的关键是求出线性回归方程,属于基础题。二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
棱锥的体积转化为的体积,求出底面积与高,从而可得结果.【题目详解】到平面的距离是面对角线的一半,即,到直线的距离即到直线的距离,,,棱锥的体积等于的体积,【题目点拨】本题主要考查锥体体积公式的应用,解题的关键是利用等积变换,将棱锥的底面积与高确定,属于基础题.14、【解题分析】
利用双曲线的焦点坐标,求解,然后求解双曲线的渐近线方程。【题目详解】双曲线的一个焦点是,可得,解得,所以双曲线的渐近线方程是故答案为:【题目点拨】本题考查双曲线的渐近线方程,属于基础题。15、24【解题分析】甲、乙排在一起,用捆绑法,先排甲、乙、戊,有种排法,丙、丁不排在一起,用插空法,有种排法,所以共有种.考点:排列组合公式.16、【解题分析】
由题意可知,集合和可以互换,只需考查,由题意可知,分为二元集、三元集和四元集三种情况,利用真子集的个数公式可得出对应的集合的个数,然后利用分类计数原理可得出答案.【题目详解】由于或,集合和可以互换,现考查,且,则,由题意知,.①当为二元集时,,,则集合的个数为;②当为三元集时,若,,则集合的个数为;若,同理可知符合条件的集合也有个;③若为四元集时,,,则集合的个数为.综上所述,共有种.故答案为:.【题目点拨】本题考查了集合的化简与运算以及集合真子集个数的求法,同时也考查了分类讨论思想的应用,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),6.1(2)见解析【解题分析】试题分析:(1)由线性回归方程过点(,),可得,再求x=6时对应函数值即为6月份生产的甲胶囊产量数(2)先确定随机变量取法:ξ=0,1,2,3,再利用组合数求对应概率,列表可得分布列,最后根据公式求数学期望试题解析:解:(1)==3,(4+4+5+6+6)=5,因线性回归方程=x+过点(,),∴=﹣=5﹣0.6×3=3.2,∴6月份的生产甲胶囊的产量数:=0.6×6+3.2=6.1.(2)ξ=0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,其分布列为ξ0123P所以Eξ==.18、(1)在上单调递增,在上单调递减;(2)5.【解题分析】分析:(1)对函数求导,分类讨论即可;(2)∵对恒成立,∴,解得或,则正整数的最小值为.即只需要证明当时,对恒成立即可.详解:(1),当时,在上单调递增.当或时,,在单调递减.当且时,令,得;令,得.∴在上单调递增,在上单调递减.(2)∵对恒成立.∴,解得或,则正整数的最小值为.下面证明当时,对恒成立,过程如下:当时,令,得;令,得.故,从而对恒成立.故整数的最小值为.点睛:不等式的证明问题,可以从所证不等式的结构和特点出发,结合已有的知识利用转化与化归思想.19、(1)()(2)见解析【解题分析】试题分析:(1)依题意,有,,故猜想;(2)下面用数学归纳法证明.①当时,,显然成立;②假设当)时,猜想成立,即,证明当时,也成立.结合①②可知,猜想对一切都成立.试题解析:(1)猜想:()(2)下面用数学归纳法证明()①当时,,显然成立;②假设当)时,猜想成立,即,则当时,即对时,猜想也成立;结合①②可知,猜想对一切都成立.考点:合情推理与演绎推理、数学归纳法.20、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中医内科职业试题及答案
- 2025年揭秘银行ai面试题及答案
- 2025年旅游度假区景观设计评估与旅游目的地形象塑造
- 校企定向协议书
- 校园赞助协议书
- 样品押金协议书
- 核查人员协议书
- 桥栏杆合同范本
- 梨园转让协议书
- 检测漏水协议书
- 浙教版科学七年级上册全册教案
- 生产管理制度文本普通货运
- 统编版必修上第六单元学习任务群教学设计(说课稿)
- 数字媒体艺术概论
- GB/T 41021-2021法庭科学DNA鉴定文书内容及格式
- 危险化学品重大危险源企业安全专项检查细则
- 健康教育专兼职名单表
- 山西省大同市各县区乡镇行政村村庄村名居民村民委员会明细
- 上海市智慧城市发展水平评估报告
- 我的世界星系mod怎么用
- 立交工程轨道第三方监测摸排调查报告
评论
0/150
提交评论