版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届吉林省白城市白城市第十四中学高二数学第二学期期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,则方程的根的个数为()A.7 B.5 C.3 D.22.某校从6名学生干部(其中女生4人,男生2人)中选3人参加学校的汇演活动,在女生甲被选中的情况下,男生乙也被选中的概率为()A. B. C. D.3.下列函数为奇函数的是()A. B. C. D.4.已知复数满足,则复数在复平面内的对应点所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.设,命题“若,则方程有实根”的逆否命题是A.若方程有实根,则 B.若方程有实根,则C.若方程没有实根,则 D.若方程没有实根,则6.双曲线x2a2A.y=±2x B.y=±3x7.若复数(为虚数单位)是纯虚数,则复数()A. B. C. D.8.若,则为()A.-233 B.10 C.20 D.2339.已知,,,若>恒成立,则实数m的取值范围是A.或 B.或C. D.10.已知双曲线,两条渐近线与圆相切,若双曲线的离心率为,则的值为()A. B. C. D.11.函数的定义域为,导函数在内的图象如图所示.则函数在内有几个极小值点()A.1 B.2 C.3 D.412.在极坐标中,点到圆的圆心的的距离为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.复数(为虚数单位)的共轭复数为,则_________.14.如图,在正三棱柱中,分别是的中点.设是线段上的(包括两个端点)动点,当直线与所成角的余弦值为,则线段的长为_______.15.______.16.如图,在一个底面边长为cm的正六棱柱容器内有一个半径为cm的铁球,现向容器内注水,使得铁球完全浸入水中,若将铁球从容器中取出,则水面下降______cm.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是(t为参数).(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且,求直线l的倾斜角的值.18.(12分)已知函数.(1)当时,求不等式的解集;(2)若不等式的解集包含,求的取值范围.19.(12分)在四棱锥中,,是的中点,面面(1)证明:面;(2)若,求二面角的余弦值.20.(12分)已知函数/(x.(1)当时,求在最小值;(2)若存在单调递减区间,求的取值范围;(3)求证:.21.(12分)如图在直三棱柱中,,为中点.(Ⅰ)求证:平面.(Ⅱ)若,且,求二面角的余弦值.22.(10分)已知集合,其中,集合.若,求;若,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
令,先求出方程的三个根,,,然后分别作出直线,,与函数的图象,得出交点的总数即为所求结果.【题目详解】令,先解方程.(1)当时,则,得;(2)当时,则,即,解得,.如下图所示:直线,,与函数的交点个数为、、,所以,方程的根的个数为,故选A.【题目点拨】本题考查复合函数的零点个数,这类问题首先将函数分为内层函数与外层函数,求出外层函数的若干个根,再作出这些直线与内层函数图象的交点总数即为方程根的个数,考查数形结合思想,属于难题.2、B【解题分析】
先求出女生甲被选中的情况下的基本事件总数,再求出在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为,结合条件概率的计算方法,可得.【题目详解】女生甲被选中的情况下,基本事件总数,在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为,则在女生甲被选中的情况下,男生乙也被选中的概率为.故选B.【题目点拨】本题考查了条件概率的求法,考查了学生的计算求解能力,属于基础题.3、A【解题分析】试题分析:由题意得,令,则,所以函数为奇函数,故选A.考点:函数奇偶性的判定.4、D【解题分析】,对应的点为,在第四象限,选D.5、D【解题分析】
根据已知中的原命题,结合逆否命题的定义,可得答案.【题目详解】命题“若,则方程有实根”的逆否命题是命题“若方程没有实根,则”,故选:D.【题目点拨】本题考查的知识点是四种命题,难度不大,属于基础题.6、A【解题分析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:∵e=因为渐近线方程为y=±bax点睛:已知双曲线方程x2a27、D【解题分析】
通过复数是纯虚数得到,得到,化简得到答案.【题目详解】复数(为虚数单位)是纯虚数故答案选D【题目点拨】本题考查了复数的计算,属于基础题型.8、A【解题分析】
对等式两边进行求导,当x=1时,求出a1+2a2+3a3+4a4+5a5的值,再求出a0的值,即可得出答案.【题目详解】对等式两边进行求导,得:2×5(2x﹣3)4=a1+2a2x+3a3x2+4a4x3+5a5x4,令x=1,得10=a1+2a2+3a3+4a4+5a5;又a0=(﹣3)5=﹣243,∴a0+a1+2a2+3a3+4a4+5a5=﹣243+10=﹣1.故选A.【题目点拨】本题考查了二项式定理与导数的综合应用问题,考查了赋值法求解二项展开式的系数和的方法,利用导数得出式子a1+2a2+3a3+4a4+5a5是解题的关键.9、C【解题分析】分析:用“1”的替换先解的最小值,再解的取值范围。详解:,所以的解集为,故选C点睛:已知二元一次方程,求二元一次分式结构的最值,用“1”的替换是均值不等式的应用,构造出的模型,再验证条件。10、A【解题分析】
先由离心率确定双曲线的渐近线方程,再由渐近线与圆相切,列出方程,求解,即可得出结果.【题目详解】渐近线方程为:,又因为双曲线的离心率为,,所以,故渐近线方程为,因为两条渐近线与圆相切,得:,解得;故选A。【题目点拨】本题主要考查由直线与圆的位置关系求出参数,以及由双曲线的离心率求渐近线方程,熟记双曲线的简单性质,以及直线与圆的位置关系即可,属于常考题型.11、A【解题分析】
直接利用极小值点两侧函数的单调性是先减后增,对应导函数值是先负后正,再结合图像即可得出结论.【题目详解】因为极小值点两侧函数的单调性是先减后增,对应导函数值是先负后正,由图得:导函数值先负后正的点只有一个,故函数在内极小值点的个数是1.故选:A【题目点拨】本题考查了极小值点的概念,需熟记极小值点的定义,属于基础题.12、C【解题分析】分析:先把点的坐标和圆的方程都化成直角坐标方程,再求点到圆心的距离得解.详解:由题得点的坐标为,因为,所以,所以圆心的坐标为(2,0),所以点到圆心的距离为,故答案为:C.点睛:(1)本题主要考查极坐标和直角坐标的互化,考查两点间的距离的求法,意在考查学生对这些知识的掌握水平.(2)极坐标化直角坐标的公式为二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】
根据直接求解即可.【题目详解】本题正确结果:【题目点拨】本题考查复数模的求解,属于基础题.14、【解题分析】
以E为原点,EA,EC为x,y轴建立空间直角坐标系,设,用空间向量法求得t,进一步求得BD.【题目详解】以E为原点,EA,EC为x,y轴建立空间直角坐标系,如下图.解得t=1,所以,填.【题目点拨】利用空间向量求解空间角与距离的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.15、【解题分析】
利用指数和对数运算,化简所求表达式.【题目详解】原式.故答案为:【题目点拨】本小题主要考查指数和对数运算,属于基础题.16、【解题分析】
由题意可求球的体积,假设铁球刚好完全浸入水中,则水面高度为,将铁球从容器中取出,求出水面高度,即可求水面下降高度.【题目详解】解:假设铁球刚好完全浸入水中,球的体积,水面高度为,此时正六棱柱容器中水的体积为,若将铁球从容器中取出,则水面高度,则水面下降.故答案为:.【题目点拨】本题考查了球体积的求解,考查了棱柱体积的求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解题分析】
(1)利用,,将曲线C的极坐标方程化为直角坐标方程;(2)将直线的参数方程代入曲线C的直角坐标方程,利用直线参数的几何意义表示出,列方程求解即可.【题目详解】(1)由得.,,曲线C的直角坐标方程为:,即(2)将直线的方程代入的方程,化简为:.(对应的参数为和)故:.,则,或.【题目点拨】本题主要考查了极坐标方程与直角坐标方程的互化,直线参数方程参数的几何意义,圆的弦长问题的计算,考查了学生的运算求解能力.18、(1)或;(2)【解题分析】
(1)当时表示出,再利用分类讨论和不等式解法求得的解集;(2)由题意,时,恒成立,由的范围去绝对值,即可求出的取值范围.【题目详解】(1)当时,,,即,①当时,有,解得;②当时,有,不等式无解;③当时,有,解得;综上,的解集为或;(2)由题意,的解集包含,即时,恒成立,因为,所以,时,的最大值为,即,解得,又,所以.【题目点拨】本题主要考查绝对值不等式的解法,考查学生分析转化能力和计算能力,属于中档题.19、(1)详见解析;(2).【解题分析】试题分析:(Ⅰ)取PB的中点F,连接AF,EF,由三角形的中位线定理可得四边形ADEF是平行四边形.得到DE∥AF,再由线面平行的判定可得ED∥面PAB;(Ⅱ)法一、取BC的中点M,连接AM,由题意证得A在以BC为直径的圆上,可得AB⊥AC,找出二面角A-PC-D的平面角.求解三角形可得二面角A-PC-D的余弦值.试题解析:(Ⅰ)证明:取PB的中点F,连接AF,EF.∵EF是△PBC的中位线,∴EF∥BC,且EF=.又AD=BC,且AD=,∴AD∥EF且AD=EF,则四边形ADEF是平行四边形.∴DE∥AF,又DE⊄面ABP,AF⊂面ABP,∴ED∥面PAB(Ⅱ)法一、取BC的中点M,连接AM,则AD∥MC且AD=MC,∴四边形ADCM是平行四边形,∴AM=MC=MB,则A在以BC为直径的圆上.∴AB⊥AC,可得.过D作DG⊥AC于G,∵平面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,∴DG⊥平面PAC,则DG⊥PC.过G作GH⊥PC于H,则PC⊥面GHD,连接DH,则PC⊥DH,∴∠GHD是二面角A﹣PC﹣D的平面角.在△ADC中,,连接AE,.在Rt△GDH中,,∴,即二面角A﹣PC﹣D的余弦值法二、取BC的中点M,连接AM,则AD∥MC,且AD=MC.∴四边形ADCM是平行四边形,∴AM=MC=MB,则A在以BC为直径的圆上,∴AB⊥AC.∵面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,∴AB⊥面PAC.如图以A为原点,方向分别为x轴正方向,y轴正方向建立空间直角坐标系.可得,.设P(x,0,z),(z>0),依题意有,,解得.则,,.设面PDC的一个法向量为,由,取x0=1,得.为面PAC的一个法向量,且,设二面角A﹣PC﹣D的大小为θ,则有,即二面角A﹣PC﹣D的余弦值.20、(1)1;(2);(3)见解析【解题分析】分析:(I)可先求f′(x),从而判断f(x)在x∈[1,+∞)上的单调性,利用其单调性求f(x)在x∈[1,+∞)最小值;(Ⅱ)求h′(x),可得若f(x)存在单调递减区间,需h′(x)<0有正数解.从而转化为:ax2+2(a﹣1)x+a<0有x>0的解.通过对a分a=0,a<0与当a>0三种情况讨论解得a的取值范围;(Ⅲ)(法一)根据(Ⅰ)的结论,当x>1时,,即.,再构造函数,令,有,从而,问题可解决;(法二)可用数学归纳法予以证明.当n=1时,ln(n+1)=ln2,3ln2=ln8>1⇒,成立;设时,命题成立,即,,再去证明n=k+1时,即可(需用好归纳假设).详解:(1),定义域为.∵∴在上是增函数..(2)因为因为若存在单调递减区间,所以有正数解.即有有解.①当时,明显成立.②当时,开口向下的抛物线,总有有解;③当时,开口向上的抛物线,即方程有正跟.当时,;,解得.综合①②③知:.综上所述:的取值范围为.(3)(法一)根据(1)的结论,当时,,即.令,则有,∴.∵,∴.(法二)当时,.∵,∴,即时命题成立.设当时,命题成立,即.∴时,根据(1)的结论,当时,,即.令,则有,则有,即时命题也成立.因此,由数学归纳法可知不等式成立.点睛:本题考查函数的导数的应用,考查最值的求法,数学归纳法的应用,考查转化思想以及计算能力.函数在一个区间上单调递增,则函数的导函数大于等于0恒成立,函数在一个区间上存在单调增区间,则函数的导函数在这个区间上大于0有解.21、(Ⅰ)见解析(Ⅱ)【解题分析】试题分析:(I)连结,由题意可证得,从而得为中点,所以,又由题意得得,所以得.(也可通过面面垂直证线面垂直)(II)由题意可得两两垂直,建立空间直角坐标系,求得平面和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 服装厂新员工培训方案
- 企业HR招聘面试技巧培训课件
- 美白护肤品相关行业投资方案
- 用外购和进口钢材、铁合金再加工生产钢材、铁合金相关行业投资方案
- 软件开发团队的测验与练习实施方案
- 电动自行车租赁市场规范方案
- 2024年国际交流学习合同
- 职业技能培训机构教师指导协议书
- 2024年个人租赁资金合同
- 团队精神培训-职业素养提升与团队建设训练
- 高标准基本农田建设监理工作总结
- 机电安装工程技术专业培训
- 7逆合成分析法与合成路线设计
- 工程材料构配件设备报审表
- 《Monsters 怪兽》中英对照歌词
- 华东地区SMT公司信息
- 隧道弃渣及弃渣场处理方案
- 隔代教育PPT课件
- 签证用完整户口本英文翻译模板
- 金属盐类溶度积表
- 社会工作毕业论文(优秀范文8篇)
评论
0/150
提交评论