




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省桓台第一中学数学高二第二学期期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某校派出5名老师去海口市三所中学进行教学交流活动,每所中学至少派一名教师,则不同的分配方案有()A.80种 B.90种 C.120种 D.150种2.在的展开式中,的系数是()A. B. C.5 D.403.已知为虚数单位,复数,则()A. B. C. D.4.设,则“”是“”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.设函数,若实数分别是的零点,则()A. B. C. D.6.展开式中第5项的二项式系数为()A.56 B.70 C.1120 D.-11207.某锥体的正视图和侧视图均为如图所示的等腰三角形,则该几何体的体积最小值为()A. B. C.1 D.28.已知,,,则()A.0.6 B.0.7 C.0.8 D.0.99.如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占50%,苹果销量约占20%,三星销量约占30%).根据该图,以下结论中一定正确的是()A.华为的全年销量最大 B.苹果第二季度的销量大于第三季度的销量C.华为销量最大的是第四季度 D.三星销量最小的是第四季度10.将4名实习教师分配到高一年级三个班实习,每班至少安排一名教师,则不同的分配方案有()种A.12 B.36 C.72 D.10811.如图阴影部分为曲边梯形,其曲线对应函数为,在长方形内随机投掷一颗黄豆,则它落在阴影部分的概率是()A. B. C. D.12.某中学为了解本校学生阅读四大名著的情况,随机调查了位学生,其中阅读过《西游记》或《红楼梦》的学生共有位,阅读过《红楼梦》的学生共有位,阅读过《西游记》且阅读过《红楼梦》的学生共有位,则阅读过《西游记》的学生人数为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数的单调递增区间是.14.设复数满足,则=__________.15.复数在复平面中对应的点位于第__________象限.16.若,则的值是_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)判断函数的奇偶性,并证明你的结论;(2)求满足不等式的实数的取值范围.18.(12分)新高考最大的特点就是取消文理分科,除语文、数学、外语之外,从物理、化学、生物、政治、历史、地理这6科中自由选择三门科目作为选考科目.某研究机构为了了解学生对全文(选择政治、历史、地理)的选择是否与性别有关,从某学校高一年级的1000名学生中随机抽取男生,女生各25人进行模拟选科.经统计,选择全文的人数比不选全文的人数少10人.(1)估计在男生中,选择全文的概率.(2)请完成下面的列联表;并估计有多大把握认为选择全文与性别有关,并说明理由;选择全文不选择全文合计男生5女生合计附:,其中.P()0.150.100.050.0250.0100.0050.001k2.0722.0763.8415.0246.6357.87910.82819.(12分)解关于的不等式.20.(12分)在平面直角坐标系中,直线的参数方程为(其中为参数).现以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出直线的普通方程和曲线的直角坐标方程;(2)若点坐标为,直线交曲线于,两点,求的值.21.(12分)已知函数.(1)若函数在上为增函数,求的取值范围;(2)若函数有两个不同的极值点,记作,,且,证明:(为自然对数).22.(10分)《基础教育课程改革纲要(试行)》将“具有良好的心理素质”列入新课程的培养目标.为加强心理健康教育工作的开展,不断提高学生的心理素质,九江市某校高二年级开设了《心理健康》选修课,学分为2分.学校根据学生平时上课表现给出“合格”与“不合格”两种评价,获得“合格”评价的学生给予41分的平时分,获得“不合格”评价的学生给予31分的平时分,另外还将进行一次测验.学生将以“平时分×41%+测验分×81%”作为“最终得分”,“最终得分”不少于51分者获得学分.该校高二(1)班选修《心理健康》课的学生的平时分及测验分结果如下:测验分[31,41)[41,41)[41,51)[51,61)[61,81)[81,91)[91,111]平时分41分人数1113442平时分31分人数1111111(1)根据表中数据完成如下2×2列联表,并分析是否有94%的把握认为这些学生“测验分是否达到51分”与“平时分”有关联?选修人数测验分达到51分测验分未达到51分合计平时分41分平时分31分合计(2)用样本估计总体,若从所有选修《心理健康》课的学生中随机抽取4人,设获得学分人数为,求的期望.附:,其中1.11.141.1241.111.1141.1112.6153.8414.1245.5346.86911.828
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
不同的分配方案有(C2、A【解题分析】
由二项展开式的通项公式,可直接得出结果.【题目详解】因为的展开式的通项为,令,则的系数是.故选A【题目点拨】本题主要考查二项展开式中指定项的系数,熟记二项式定理即可,属于基础题型.3、C【解题分析】
对进行化简,得到标准形式,在根据复数模长的公式,得到【题目详解】对复数进行化简所以【题目点拨】考查复数的基本运算和求复数的模长,属于简单题.4、A【解题分析】分析:首先求解绝对值不等式,然后求解三次不等式即可确定两者之间的关系.详解:绝对值不等式,由.据此可知是的充分而不必要条件.本题选择A选项.点睛:本题主要考查绝对值不等式的解法,充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.5、A【解题分析】由题意得,函数在各自的定义域上分别为增函数,∵,又实数分别是的零点∴,∴,故.选A.点睛:解答本题时,先根据所给的函数的解析式判断单调性,然后利用判断零点所在的范围,然后根据函数的单调性求得的取值范围,其中借助0将与联系在一起是关键.6、B【解题分析】分析:直接利用二项展开式的通项公式求解即可.详解:展开式的通项公式为则展开式中第5项的二项式系数为点睛:本题考查二项展开式的通项公式,属基础题.7、B【解题分析】
锥体高一定,底面积最小时体积最小,底面图形可以是圆,等腰直角三角形,正方形,等腰直角三角形是面积最小,计算得到答案.【题目详解】锥体高一定,底面积最小时体积最小,底面图形可以是圆,等腰直角三角形,正方形,等腰直角三角形是面积最小故答案选B【题目点拨】本题考查了锥体的体积,判断底面是等腰直角三角形是解题的关键.8、D【解题分析】分析:根据随机变量服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得.详解:由题意,
∵随机变量,,
∴故选:D.点睛:本题主要考查正态分布曲线的特点及曲线所表示的意义、函数图象对称性的应用等基础知识,属于基础题.9、A【解题分析】
根据图象即可看出,华为在每个季度的销量都最大,从而得出华为的全年销量最大,从而得出正确;由于不知每个季度的销量多少,从而苹果、华为和三星在哪个季度的销量大或小是没法判断的,从而得出选项,,都错误.【题目详解】根据图象可看出,华为在每个季度的销量都最大,所以华为的全年销量最大;每个季度的销量不知道,根据每个季度的百分比是不能比较苹果在第二季度和第三季度销量多少的,同样不能判断华为在哪个季度销量最大,三星在哪个季度销量最小;,,都错误,故选.【题目点拨】本题主要考查对销量百分比堆积图的理解.10、B【解题分析】试题分析:第一步从名实习教师中选出名组成一个复合元素,共有种,第二步把个元素(包含一个复合元素)安排到三个班实习有,根据分步计数原理不同的分配方案有种,故选B.考点:计数原理的应用.11、D【解题分析】
通过定积分可求出空白部分面积,于是利用几何概型公式可得答案.【题目详解】由题可知长方形面积为3,而长方形空白部分面积为:,故所求概率为,故选D.【题目点拨】本题主要考查定积分求几何面积,几何概型的运算,难度中等.12、B【解题分析】
根据题意画出韦恩图即可得到答案.【题目详解】根据题意阅读过《西游记》或《红楼梦》的学生共有位,阅读过《红楼梦》的学生共有位,阅读过《西游记》且阅读过《红楼梦》的学生共有位,得到的韦恩图如图,所以阅读过《西游记》的学生人数为人故选B.【题目点拨】本题考查利用韦恩图解决实际问题,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】试题分析:因为,所以单调递增区间是考点:导数应用14、【解题分析】
分析:由可得,再利用两个复数代数形式的除法法则化简,结合共轭复数的定义可得结果.详解:满足,,所以,故答案为.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.15、四【解题分析】分析:根据复数的除法运算和加法运算公式得到结果即可.详解:复数对应的点为()位于第四象限.故答案为:四.点睛:本题考查了复数的运算法则、复数相等,考查了推理能力与计算能力,属于基础题,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.16、2或7【解题分析】
由组合数的性质,可得或,求解即可.【题目详解】,或,解得或,故答案为2或7.【题目点拨】本题考查组合与组合数公式,属于基础题.组合数的基本性质有:①;②;③.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)为奇函数;证明见解析(2)【解题分析】
(1)显然,再找到与的关系即可;(2)由可得,进而求解即可.【题目详解】(1)是奇函数;证明:因为,所以.所以为奇函数(2)解:由不等式,得,整理得,所以,即【题目点拨】本题考查函数奇偶性的证明,考查解含指数的不等式,考查运算能力.18、(1);(2)列联表见解析,,理由见解析.【解题分析】
(1)利用古典概型概率公式求解即可;(2)由题先求得选择全文的有20人,不选全文的有30人,即可完成列联表,再代入公式求解,并与7.879比较即可.【题目详解】(1)由题中数据可知,男生总共25人,选择全文的5人,故选择全文的概率为(2)因为选择全文的人数比不选全文的人数少10人,男生、女生共有50人,所以选择全文的有20人,不选全文的有30人,由此完成列联表:选择全文不选择全文全计男生52025女生151025合计203050因为,所以至少有的把握认为选择全文与性别有关.【题目点拨】本题考查古典概型的概率,考查利用独立性检验解决实际问题,考查数据处理能力.19、当时,不等式的解集为;当时,不等式的解集为或;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.【解题分析】
将原不等式因式分解化为,对参数分5种情况讨论:,,,,,分别解不等式.【题目详解】解:原不等式可化为,即,①当时,原不等式化为,解得,②当时,原不等式化为,解得或,③当时,原不等式化为.当,即时,解得;当,即时,解得满足题意;当,即时,解得.综上所述,当时,不等式的解集为;当时,不等式的解集为或;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.【题目点拨】本题考查含参不等式的求解,求解时注意分类讨论思想的运用,对分类时要做到不重不漏的原则,同时最后记得把求得的结果进行综合表述.20、(1),;(2).【解题分析】
(1)根据参普互化和极值互化的公式得到标准方程;(2)联立直线和圆的方程,得到关于t的二次,再由韦达定理得到.【题目详解】(1)由消去参数,得直线的普通方程为又由得,由得曲线的直角坐标方程为,即;(2)其代入得,则所以.21、(1)(2)见解析【解题分析】分析:(1)由题意可知,函数的定义域为,,因为函数在为增函数,所以在上恒成立,等价于,由此可求的取值范围;(2)求出,因为有两极值点,所以,设令,则,上式等价于要证,令,根据函数的单调性证出即可.详解:(1)由题意可知,函数的定义域为,,因为函数在为增函数,所以在上恒成立,等价于在上恒成立,即,因为,所以,故的取值范围为.(2)可知,所以,因为有两极值点,所以,欲证,等价于要证:,即,所以,因为,所以原式等价于要证明:,①由,可得,则有,②由①②原式等价于要证明:,即证,令,则,上式等价于要证,令,则因为,所以,所以在上单调递增,因此当时,,即.所以原不等式成立,即.点睛:本题考查了函数的单调性,考查导数的应用以及不等式的证明,属难题.22、(1)有94%的把握认为学生“测验分是否达到51分”与“平时分”有关联;(2)4【解题分析】
(1)根据数据填表,然后计算,可得结果.(2)根据计算,可得未获得分数的人数,然后可知获得分数的概率,依据二项分布数学期望的计算方法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论