2024届吉林省百校联盟数学高二下期末综合测试试题含解析_第1页
2024届吉林省百校联盟数学高二下期末综合测试试题含解析_第2页
2024届吉林省百校联盟数学高二下期末综合测试试题含解析_第3页
2024届吉林省百校联盟数学高二下期末综合测试试题含解析_第4页
2024届吉林省百校联盟数学高二下期末综合测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届吉林省百校联盟数学高二下期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若1-2x2019=a0+A.2017 B.2018 C.2019 D.20202.若X~B(n,p),且E(X)=6,D(X)=3,则P(X=1)的值为()A.3×2-2 B.2-4 C.3×2-10 D.2-83.如图是求样本数据方差的程序框图,则图中空白框应填入的内容为()A. B.C. D.4.若直线的倾斜角为,则()A.等于 B.等于 C.等于 D.不存在5.与椭圆共焦点且过点的双曲线方程是()A. B. C. D.6.设函数f(x),g(x)在[A,B]上均可导,且f′(x)<g′(x),则当A<x<B时,有()A.f(x)>g(x)B.f(x)+g(A)<g(x)+f(A)C.f(x)<g(x)D.f(x)+g(B)<g(x)+f(B)7.将一枚质地均匀的硬币抛掷四次,设为正面向上的次数,则等于()A. B. C. D.8.在的展开式中,的系数为()A.-10 B.20 C.-40 D.509.下列命题正确的是()A.进制转换:B.已知一组样本数据为1,6,3,8,4,则中位数为3C.“若,则方程”的逆命题为真命题D.若命题:,,则:,10.设集合,集合,则()A. B. C. D.11.已知实数满足条件,且,则的取值范围是()A. B. C. D.12.函数的递增区间为()A., B.C., D.二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中仅有第4项的二项式系数最大,则该展开式的常数项是__________.14.已知一组数据为2,3,4,5,6,则这组数据的方差为______.15.函数的极值点为__________.16.若C5x=C三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线与椭圆有共同的焦点,过点的直线与抛物线交于两点.(Ⅰ)求抛物线的方程;(Ⅱ)若,求直线的方程.18.(12分)已知函数.(1)求的最小值;(2)证明:对一切,都有成立.19.(12分)已知函数(1)求函数的解析式;(2)解关于的不等式.20.(12分)已知复数z满足z=﹣1.(1)求复数z的共轭复数;(2)若w=z+ai,且|w|≤|z|,求实数a的取值范围.21.(12分)如图,在多面体中,平面,四边形为正方形,四边形为梯形,且,,,.(1)求直线与平面所成角的正弦值;(2)线段上是否存在点,使得直线平面?若存在,求的值:若不存在,请说明理由.22.(10分)已知定义在上的函数的图象关于原点对称,且函数在上为减函数.(1)证明:当时,;(2)若,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

通过对等式中的x分别赋0,1,求出常数项和各项系数和得到要求的值.【题目详解】令x=0,得a0令x=1,得-1=a所以a0故选A.【题目点拨】该题考查的是有二项展开式中系数和的有关运算问题,涉及到的知识点有应用赋值法求二项式系数和与常数项,属于简单题目.2、C【解题分析】E(X)=np=6,D(X)=np(1-p)=3,∴p=,n=12,则P(X=1)=·()1·()11=3×2-10.3、D【解题分析】

由题意知该程序的作用是求样本的方差,由方差公式可得.【题目详解】由题意知该程序的作用是求样本的方差,所用方法是求得每个数与的差的平方,再求这8个数的平均值,则图中空白框应填入的内容为:故选:D【题目点拨】本题考查了程序框图功能的理解以及样本方差的计算公式,属于一般题.4、C【解题分析】分析:根据画出的直线得直线的倾斜角.详解:直线x=1的倾斜角为故答案为:C.点睛:(1)本题主要考查特殊直线的倾斜角,意在考查学生对该知识的掌握水平.(2)任意一条直线都有倾斜角,但是不是每一条直线都有斜率.5、A【解题分析】由椭圆方程可得焦点坐标为,设与其共焦点的双曲线方程为:,双曲线过点,则:,整理可得:,结合可得:,则双曲线方程为:.本题选择A选项.6、B【解题分析】试题分析:设F(x)=f(x)-g(x),∵在[A,B]上f'(x)<g'(x),F′(x)=f′(x)-g′(x)<0,∴F(x)在给定的区间[A,B]上是减函数.∴当x>A时,F(x)<F(A),即f(x)-g(x)<f(A)-g(A)即f(x)+g(A)<g(x)+f(A)考点:利用导数研究函数的单调性7、C【解题分析】分析:先确定随机变量得取法,再根据独立重复试验求概率.详解:因为所以选C.点睛:次独立重复试验事件A恰好发生次得概率为.其中为1次试验种A发生得概率.8、C【解题分析】分析:根据二项式展开式的通项求的系数.详解:由题得的展开式的通项为令5-r=2,则r=3,所以的系数为故答案为:C.点睛:(1)本题主要考查二项式展开式的系数的求法,意在考查学生对该基础知识的掌握水平和基本计算能力.(2)二项式通项公式:().9、A【解题分析】

根据进制的转化可判断A,由中位数的概念可判断B,写出逆命题,再判断其真假可判断C.根据全称命题的否定为特称命题,可判断D.【题目详解】A.,故正确.B.样本数据1,6,3,8,4,则中位数为4.故不正确.C.“若,则方程”的逆命题为:“方程,则”,为假命题,故不正确.D.若命题:,.则:,,故不正确.故选:A【题目点拨】本题考查了进制的转化、逆命题,中位数以及全称命题的否定,属于基础题.10、B【解题分析】

求解出集合,根据并集的定义求得结果.【题目详解】本题正确选项:【题目点拨】本题考查集合运算中的并集运算,属于基础题.11、D【解题分析】

如图所示,画出可行域和目标函数,根据平移得到答案.【题目详解】如图所示,画出可行域和目标函数,,则,表示直线轴截距的相反数,根据图像知:当直线过,即,时有最小值为;当直线过,即时有最大值为,故.故选:.【题目点拨】本题考查了线性规划问题,画出图像是解题的关键.12、A【解题分析】分析:直接对函数求导,令导函数大于0,即可求得增区间.详解:,,增区间为.故答案为A.点睛:本题考查了导数在研究函数的单调性中的应用,需要注意的是函数的单调区间一定是函数的定义域的子集,因此求函数的单调区间一般下,先求定义域;或者直接求导,在定义域内求单调区间.二、填空题:本题共4小题,每小题5分,共20分。13、15【解题分析】∵二项式的展开式中仅有第4项的二项式系数最大,,

则展开式中的通项公式为.

令,求得,故展开式中的常数项为,

故答案为15.14、2【解题分析】分析:根据方差的计算公式,先算出数据的平均数,然后代入公式计算即可得到结果.详解:平均数为:即答案为2.点睛:本题考查了方差的计算,解题的关键是方差的计算公式的识记.它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15、【解题分析】

求出的导数,令,根据单调区间,可得所求极值点;【题目详解】令,得则函数在上单调递减,在上单调递增,则函数在处取得极小值,是其极小值点.即答案为3.【题目点拨】本题考查导数的运用:求单调区间和极值点,考查化简整理的运算能力,属于基础题.16、2或3【解题分析】

根据组合数的性质得解.【题目详解】由组合数的性质得x=2或x+2=5,所以x=2或x=3.【题目点拨】本题考查组合数的性质,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)抛物线的方程为;(Ⅱ)直线的方程为或.【解题分析】分析:(Ⅰ)由题意可知椭圆的焦点坐标为,则,抛物线的方程为.(Ⅱ)依题意,可设直线的方程为.联立直线方程与抛物线方程可得,结合韦达定理可得则,解得.直线的方程为或.详解:(Ⅰ)因为椭圆的焦点坐标为,而抛物线与椭圆有共同的焦点,所以,解得,所以抛物线的方程为.(Ⅱ)依题意,可设直线的方程为.联立,整理得,由题意,,所以或.则.则,.则又已知,所以,解得.所以直线的方程为或.化简得直线的方程为或.点睛:(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.18、(I).(Ⅱ)见解析.【解题分析】

(1)先求出函数的定义域,然后求导数,根据导函数的正负判断函数的单调性进而可求出最小值.(2)对一切,都有成立,即,结合(1)中结论可知,构造新函数,分析其最大值,可得答案.【题目详解】(1)的定义域为,的导数.令,解得;令,解得.从而在单调递减,在,单调递增.所以,当时,取得最小值.(2)若则,由(1)得:,当且仅当时,取最小值;设,则,时,,单调递增,时,,单调递减,故当时,取最大值故对一切,都有成立.【题目点拨】本题考查的知识点是函数在某点取得极值的条件,导数在最值问题中的应用,属于难题.19、(1)(2)【解题分析】

(1)令,得,求出的范围,得出的范围,再将代入题中函数解析式即可得出函数的解析式与定义域;(2)将所求不等式转化为,然后解出该不等式组即可得出答案.【题目详解】(1)令,则,,由题意知,即,则.所以,故.(2)由,得.由,得,因为,所以,由,得,即,,解得或.又,,所以或.故不等式的解集为.【题目点拨】本题第(1)问考查函数解析式的求解,对于简单复合函数解析式的求解,常用换元法,但要注意新元的取值范围作为定义域,第(2)问考查对数不等式的解法,一般要转化为同底数对数来处理,借助对数函数的单调性求解,同时也要注意真数大于零这个隐含条件.20、(1)(2)﹣1≤a≤0【解题分析】

(1)利用复数的运算法则、共轭复数的定义即可得出;(2)利用复数模的计算公式、一元二次不等式的解法即可得出.【题目详解】解:(1),.(2),,,,则,,,所以,实数的取值范围是:.【题目点拨】本题考查了复数的运算法则、共轭复数的定义、复数模的计算公式、一元二次不等式的解法,考查了计算能力,属于基础题.21、(1);(2).【解题分析】

建立适当的空间直角坐标系.(1)求出平面的法向量,利用空间向量夹角公式可以求出直线与平面所成角的正弦值;(2)求出平面的法向量,结合线面平行的性质,空间向量共线的性质,如果求出的值,也就证明出存在线段上是否存在点,使得直线平面,反之就不存在.【题目详解】以为空间直角坐标系的原点,向量所在的直线为轴.如下所示:.(1)平面的法向量为,..直线与平面所成角为,所以有;(2)假设线段上是存在点,使得直线平面.设,因此,所以的坐标为:..设平面的法向量为,,,因为直线平面,所以有,即.【题目点拨】本题考查了线面角的求法以及线面平行的性质,考查了数学运算能力.22、(1)证明见解析;(2).【解题分析】

(1)由于是奇函数,,因此要证明的不等式可变形为要证明,因此只要说明与异号,即与的大小和与的大小关系正好相反即可,这由减函数的定义可得,证明时可分和分别证明即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论