![江苏省南通市天星湖中学2024届高二数学第二学期期末检测试题含解析_第1页](http://file4.renrendoc.com/view11/M01/03/04/wKhkGWW75kOAWasBAAGlik247vw257.jpg)
![江苏省南通市天星湖中学2024届高二数学第二学期期末检测试题含解析_第2页](http://file4.renrendoc.com/view11/M01/03/04/wKhkGWW75kOAWasBAAGlik247vw2572.jpg)
![江苏省南通市天星湖中学2024届高二数学第二学期期末检测试题含解析_第3页](http://file4.renrendoc.com/view11/M01/03/04/wKhkGWW75kOAWasBAAGlik247vw2573.jpg)
![江苏省南通市天星湖中学2024届高二数学第二学期期末检测试题含解析_第4页](http://file4.renrendoc.com/view11/M01/03/04/wKhkGWW75kOAWasBAAGlik247vw2574.jpg)
![江苏省南通市天星湖中学2024届高二数学第二学期期末检测试题含解析_第5页](http://file4.renrendoc.com/view11/M01/03/04/wKhkGWW75kOAWasBAAGlik247vw2575.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南通市天星湖中学2024届高二数学第二学期期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的定义城是()A. B. C. D.2.若某几何体的三视图如图所示,则此几何体的体积等于()A.24 B.30 C.10 D.603.某班4名同学参加数学测试,每人通过测试的概率均为,且彼此相互独立,若X为4名同学通过测试的人数,则D(X)的值为()A.1 B.2 C.3 D.44.若,则()A. B. C. D.5.如图,矩形的四个顶点依次为,,记线段、以及的图象围成的区域(图中阴影部分)为,若向矩形内任意投一点,则点落在区域内的概率为()A. B.C. D.6.将两个随机变量之间的相关数据统计如表所示:根据上述数据,得到的回归直线方程为,则可以判断()A. B. C. D.7.若存在两个正实数,使得等式成立,其中为自然对数的底数,则实数的取值范围是()A. B. C. D.8.已知函数的图象如图所示(其中是函数的导函数),下面四个图象中,的图象大致是()A. B. C. D.9.在等差数列{an}中,,角α顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点(a2,a1+a3),则cos2α=()A. B. C. D.10.已知函数,则使得成立的x的取值范围是()A. B. C. D.11.在中,,,则()A.1 B. C. D.212.若,,满足,,.则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数是定义在上的奇函数,且函数的图象关于直线对称,当时,,则__________.14.下列随机变量中不是离散型随机变量的是__________(填序号).①某宾馆每天入住的旅客数量是;②某水文站观测到一天中珠江的水位;③西部影视城一日接待游客的数量;④阅海大桥一天经过的车辆数是.15.定义在上的偶函数满足,且,则______.16.某人抛掷一枚均匀骰子,构造数列,使,记,则且的概率为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)甲乙两人报名参加由某网络科技公司举办的“技能闯关”双人电子竞技比赛,比赛规则如下:每一轮“闯关”结果都采取计分制,若在一轮闯关中,一人过关另一人未过关,过关者得1分,未过关得分;若两人都过关或都未过关则两人均得0分.甲、乙过关的概率分别为和,在一轮闯关中,甲的得分记为.(1)求的分布列;(2)为了增加趣味性,系统给每位报名者基础分3分,并且规定出现一方比另一方多过关三轮者获胜,此二人比赛结束.表示“甲的累积得分为时,最终认为甲获胜”的概率,则,其中,,,令.证明:点的中点横坐标为;(3)在第(2)问的条件下求,并尝试解释游戏规则的公平性.18.(12分)已知函数,曲线在处的切线与轴平行.(1)求实数的值;(2)设,求在区间上的最大值和最小值.19.(12分)交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:交强险浮动因素和浮动费率比率表浮动因素浮动比率上一年度未发生有责任道路交通事故下浮10%上两年度未发生有责任道路交通事故下浮上三年度未发生有责任道路交通事故下浮30%上一个年度发生一次有责任不涉及死亡的道路交通事故0%上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故上浮10%上一个年度发生有责任交通死亡事故上浮30%某机构为了解某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:类型A1A2A3A4A5A6数量105520155以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.20.(12分)选修4-4:坐标系与参数方程在直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴正半轴为极轴建立极坐标系,的极坐标方程为.(Ⅰ)写出的直角坐标方程;(Ⅱ)为直线上一动点,当到圆心的距离最小时,求的直角坐标.21.(12分)如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A-PB-C的余弦值.22.(10分)如图,在正四棱柱中,已知AB=2,,E、F分别为、上的点,且.(1)求证:BE⊥平面ACF;(2)求点E到平面ACF的距离.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
根据对数的真数大于零这一原则得出关于的不等式,解出可得出函数的定义域.【题目详解】由题意可得,解得,因此,函数的定义域为,故选C.【题目点拨】本题考查对数型函数的定义域的求解,求解时应把握“真数大于零,底数大于零且不为”,考查计算能力,属于基础题.2、A【解题分析】
根据几何体的三视图得出该几何体是三棱柱去掉一个三棱锥所得的几何体,结合三视图的数据,求出它的体积.【题目详解】根据几何体的三视图,得该几何体是三棱柱截去一个三棱锥后所剩几何体几何体是底面为边长为3,4,5的三角形,高为5的三棱柱被平面截得的,如图所示:由题意:原三棱柱体积为:V截掉的三棱锥体积为:V所以该几何体的体积为:V=本题正确选项:A【题目点拨】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.3、A【解题分析】
由题意知X~B(4,),根据二项分布的方差公式进行求解即可.【题目详解】∵每位同学能通过该测试的概率都是,且各人能否通过测试是相互独立的,∴X~B(4,),则X的方差D(X)=4(1)=1,故选A.【题目点拨】本题主要考查离散型随机变量的方差的计算,根据题意得到X~B(4,)是解决本题的关键.4、D【解题分析】
由于两个对数值均为正,故m和n一定都小于1,再利用对数换底公式,将不等式等价变形为以10为底的对数不等式,利用对数函数的单调性比较m、n的大小即可【题目详解】∵∴0<n<1,0<m<1且即lg0.5()>0⇔lg0.5()>0∵lg0.5<0,lgm<0,lgn<0∴lgn﹣lgm<0即lgn<lgm⇔n<m∴1>m>n>0故选D.【题目点拨】本题考查了对数函数的图象和性质,对数的运算法则及其换底公式的应用,利用图象和性质比较大小的方法5、D【解题分析】分析:利用定积分的几何意义求出阴影部分的面积,由几何概型的概率公式,即可得结果.详解:阴影部分的面积是,矩形的面积是,点落在区域内的概率,故选D.点睛:本题主要考查定积分的几何意义以及几何概型概率公式,属于中档题.一般情况下,定积分的几何意义是介于轴、曲线以及直线之间的曲边梯形面积的代数和,其中在轴上方的面积等于该区间上的积分值,在轴下方的面积等于该区间上积分值的相反数,所以在用定积分求曲边形面积时,一定要分清面积与定积分是相等还是互为相反数;两条曲线之间的面积可以用两曲线差的定积分来求解.6、C【解题分析】
根据最小二乘法,求出相关量,,即可求得的值。【题目详解】因为,,,所以,,故选C。【题目点拨】本题主要考查利用最小二乘法求线性回归方程,意在考查学生的数学运算能力。7、D【解题分析】试题分析:由得,即,即设,则,则条件等价为,即有解,设,为增函数,∵,∴当时,,当时,,即当时,函数取得极小值为:,即,若有解,则,即,则或,故选D.考点:函数恒成立问题.【方法点晴】本题主要考查不等式恒成立问题,根据函数与方程的关系,转化为两个函数相交问题,利用构造法和导数法求出函数的极值和最值是解决本题的关键,综合性较强,难度较大根据函数与方程的关系将方程进行转化,利用换元法转化为方程有解,构造函数求函数的导数,利用函数极值和单调性的关系进行求解即可.8、C【解题分析】
根据图象:分,,,,四种情况讨论的单调性.【题目详解】根据图象:当,所以递增,当,所以递减,当,所以递减,当,所以递增,故选:C【题目点拨】本题主要考查导数与函数的图象间的关系,还考查了数形结合的思想和理解辨析的能力,属于常考题.9、A【解题分析】
利用等差数列的知识可求的值,然后利用的公式可求.【题目详解】由等差数列{an}的性质可知,所以,所以.故选:A.【题目点拨】本题主要考查等差数列的性质和三角函数求值,注意齐次式的转化,侧重考查数学运算的核心素养.10、C【解题分析】
转化函数,证明函数单调性,奇偶性,再转化为,即,求解即可.【题目详解】由题意,函数,定义域为R,故为偶函数令,在单调递增,且在单调递增则因此故选:C【题目点拨】本题考查了函数的奇偶性、单调性在解不等式中的应用,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.11、B【解题分析】
由向量的数量积公式直接求解即可【题目详解】因为,所以为直角三角形,所以,所以.故选B【题目点拨】本题考查平面向量的夹角与模,以及平面向量数量积的运算,考查运算求解能力.12、A【解题分析】
利用指数函数和对数函数的单调性即可比较大小.【题目详解】,,,,,,,,,故选:A.【题目点拨】本题考查了指数函数和对数函数的单调性,考查了计算能力和推理能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:详解:函数是定义在上的奇函数,故函数)关于(2,0)中心对称,函数的图象关于直线对称,得到函数的周期为:4,故答案为:0.点睛:这个题目考查了函数的对称性和周期性,对于抽象函数,且要求函数值的题目,一般是研究函数的单调性和奇偶性,通过这些性质将要求的函数值转化为已知表达式的区间上,将转化后的自变量代入解析式即可.14、②【解题分析】
利用离散型随机变量的定义直接求解.【题目详解】①③④中的随机变量的所有取值,我们都可以按照一定的次序一一列出,因此它们是离散型随机变量;②中随机变量可以取某一区间内的一切值,但无法按一定次序一一列出,故不是离散型随机变量.故答案为:②【题目点拨】本题考查离散型随机变量的判断,是基础题,解题时要认真审题,注意离散型随机变量的定义的合理运用,比较基础.15、【解题分析】
根据题意,分析可得有,即函数是周期为6的周期函数,进而可得,结合函数的奇偶性分析可得答案.【题目详解】根据题意,函数满足,则有,
则函数是周期为6的周期函数,
则,
又由为偶函数,则,
故;
故答案为:.【题目点拨】本题主要考查函数的奇偶性与周期性的应用,注意分析函数的周期性,属于中档题.16、.【解题分析】
根据题意,抛掷一枚均匀骰子,出现奇数或偶数概率为,则且的情况有2种:①当前2次同时出现偶数时,则后6次出现3次偶数3次奇数,②当前2次出现奇数时,则后6次出现5次偶数1次奇数,分别计算相应的概率求和即可.【题目详解】抛掷一枚均匀骰子,出现奇数或偶数概率为,构造数列,使,记,则且的情况为:①当前2次同时出现偶数时,则后6次出现3次偶数3次奇数,相应的概率,②当前2次出现奇数时,则后6次出现5次偶数1次奇数,相应的概率为,所以概率为.故答案为:.【题目点拨】本题考查二项分布概率计算,结合排列组合与数列的知识,属于综合题,解题的关键在于对所求情况进行分析,再利用二项分布进行概率计算即可,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)分布列见解析;(2)见解析;(3),试解释游戏规则的公平性见解析【解题分析】
(1)由题意得:,分别求出相应的概率,由此能求出的分布列.(2)由题意得,,,推导出,根据中点公式能证明点的中点横坐标为;(3)由,求出,从而,,由此推导出甲获胜的概率非常小,说明这种游戏规则是公平的.【题目详解】(1),,,的分布列为:01(2)由题意得:,,.于是,有,整理可得:,根据中点公式有:,命题得证.(3)由(2)可知,于是又,所以,,.表示最终认为甲获胜概率,由计算结果可以看出,在甲过关的概率为0.5,乙过关的概率为0.6时,认为甲获胜的概率为,此时得出甲获胜的概率非常小,说明这种游戏规则是公平的.【题目点拨】本题考查了离散型随机变量的分布列,用概率说明游戏的公平性,考查了学生分析问题、解决问题的能力,属于中档题.18、(1);(2)最大值为,最小值为.【解题分析】
(1)求出导数,由可求出实数的值;(2)利用函数的导数,判断函数的单调性,求出函数的极值以及端点的函数值,比较大小后可得出该函数的最值.【题目详解】(1),,由于曲线在处的切线与轴平行,则,解得;(2)由(1)可得,该函数的定义域为,,令,可得.当时,,,此时;当时,,,此时.所以,函数在上单调递增,在上单调递减.,,当时,.,,令,则,所以,函数在时单调递增,即,则,因此,函数在区间上的最大值为,最小值为.【题目点拨】本题考查函数的导数的应用,利用切线斜率求参数以及函数的最值的求法,考查转化思想的应用,是难题.19、(1)分布列见解析,(2)①,②万元【解题分析】
(1)由题意列出X的可能取值为,,,,,,结合表格写出概率及分布列,再求解期望(2)①建立二项分布求解三辆车中至多有一辆事故车的概率②先求出一辆二手车利润的期望,再乘以100即可【题目详解】(1)由题意可知:X的可能取值为,,,,,由统计数据可知:,,,,,.所以的分布列为:.(2)①由统计数据可知任意一辆该品牌车龄已满三年的二手车为事故的概率为,三辆车中至多有一辆事故车的概率为:.②设Y为给销售商购进并销售一辆二手车的利润,Y的可能取值为所以Y的分布列为:YP所以.所以该销售商一次购进辆该品牌车龄已满三年的二手车获得利润的期望值为万元.【题目点拨】本题考查离散型随机变量及分布列,考查二项分布,考查计算能力,是基础题20、(Ⅰ);(Ⅱ).【解题分析】试题分析:(Ⅰ)先将两边同乘以可得,再利用,可得的直角坐标方程;(Ⅱ)先设的坐标,则,再利用二次函数的性质可得的最小值,进而可得的直角坐标.试题解析:(Ⅰ)由,得,从而有,所以.(Ⅱ)设,又,则,故当时,取最小值,此时点的直角坐标为.考点:1、极坐标方程化为直角坐标方程;2、参数的几何意义;3、二次函数的性质.21、(1)见解析(2)【解题分析】
试题解析:(1)∵∠DAB=600,AB=2AD,由余弦定理得BD=AD,从而BD2+AD2=AB2故BD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电梯安全文化培养全员安全意识
- 指向儿童生长的小学数学教材建设与实施路径
- 2025-2030年拉力赛车拉力赛行业深度调研及发展战略咨询报告
- 2025-2030年唇部彩妆盘设计企业制定与实施新质生产力战略研究报告
- 2025-2030年商用食品加工机智能升级企业制定与实施新质生产力战略研究报告
- 2025-2030年新能源汽车充电站充电速度提升行业跨境出海战略研究报告
- 西安科技大学高新学院《小学数学教学法》2023-2024学年第二学期期末试卷
- 2025-2030年在线COD监测仪企业制定与实施新质生产力战略研究报告
- 2025-2030年可穿戴人工肺辅助呼吸行业深度调研及发展战略咨询报告
- 2025-2030年古早味米糕外卖行业深度调研及发展战略咨询报告
- 护理教学方法课件
- 沥青试验讲解精品课件
- 内镜下粘膜剥离术(ESD)护理要点及健康教育
- 2022年全省百万城乡建设职工职业技能竞赛暨“华衍杯”江苏省第三届供水安全知识竞赛题库
- 广西北海LNG储罐保冷施工方案
- 《中国人阅读书目(三)——中国初中生基础阅读书目-导赏手册》新书简介2014.8.14 (1)
- 《生态学》课件—第1章:绪论
- 中心静脉压(CVP)监测及波形分析
- 人教版(PEP)英语五年级下册-Unit 1My day A Let’s spell 教案
- 家庭病床工作制度(共2页)
- 数控机床公司绩效计划(范文)
评论
0/150
提交评论