2024届四川省会理县第一中学数学高二第二学期期末预测试题含解析_第1页
2024届四川省会理县第一中学数学高二第二学期期末预测试题含解析_第2页
2024届四川省会理县第一中学数学高二第二学期期末预测试题含解析_第3页
2024届四川省会理县第一中学数学高二第二学期期末预测试题含解析_第4页
2024届四川省会理县第一中学数学高二第二学期期末预测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省会理县第一中学数学高二第二学期期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的单调递减区间是()A. B. C. D.2.一个均匀的正方体,把其中相对的面分别涂上红色、黄色、蓝色,随机向上抛出,正方体落地时“向上面为红色”的概率是A. B. C. D.3.设是虚数单位,则的值为()A. B. C. D.4.已知随机变量服从正态分布,若,则()A. B. C. D.5.已知数列是等比数列,若则的值为()A.4 B.4或-4 C.2 D.2或-26.椭圆为参数)的离心率是()A. B. C. D.7.若为虚数单位,复数与的虚部相等,则实数的值是A. B.2 C.1 D.8.已知椭圆的左右焦点分别为,,以为圆心,为直径的圆与椭圆在第一象限相交于点,且直线的斜率为,则椭圆的离心率为A. B. C. D.9.《九章算术》中有这样一个问题:今有竹九节,欲均减容之(其意为:使容量均匀递减),上三节容四升,下三节容二升,中三节容几何?()A.二升 B.三升 C.四升 D.五升10.已知是虚数单位,若复数满足,则复数对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知集合,,则为()A. B. C. D.12.设函数在R上可导,其导函数为,且函数的图像如题(8)图所示,则下列结论中一定成立的是A.函数有极大值和极小值B.函数有极大值和极小值C.函数有极大值和极小值D.函数有极大值和极小值二、填空题:本题共4小题,每小题5分,共20分。13.已知某种新产品的编号由1个英文字母和1个数字组成,且英文字母在前,数字在后.已知英文字母是,,,,这5个字母中的1个,数字是1,2,3,4,5,6,7,8,9这9个数字中的一个,则共有__________个不同的编号(用数字作答).14.已知是双曲线的右焦点,的右支上一点到一条渐近线的距离为2,在另一条渐近线上有一点满足,则________________.15.用5,6,7,8,9组成没有重复数字的五位数,其中两个偶数数字之间恰有一个奇数数字的五位数的个数是_______.(用数字作答)16.高一(10)班有男生人,女生人,若用分层抽样的方法从该班的全体同学中抽取一个容量为的样本,则抽取男生的人数为__________人.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,四边形为正方形,面,且,为中点.(1)证明://平面;(2)证明:平面平面;(3)求二面角的余弦值.18.(12分)选修4-5:不等式选讲已知关于的不等式(Ⅰ)当a=8时,求不等式解集;(Ⅱ)若不等式有解,求a的范围.19.(12分)高二年级数学课外小组人:(1)从中选一名正组长和一名副组长,共有多少种不同的选法?(2)从中选名参加省数学竞赛,有多少种不同的选法?20.(12分)2018年6月14日,国际足联世界杯足球赛在俄罗斯举行了第21届赛事.虽然中国队一如既往地成为了看客,但中国球迷和参赛的32支队伍所在国球迷一样,对本届球赛热情似火,在6月14日开幕式的第二天,我校足球社团从全校学生中随机抽取了120名学生,对是否收看开幕式情况进行了问卷调查,统计数据如下:收看没收看男生6020女生2020(1)根据上表说明,能否有99%的把握认为,是否收看开幕式与性别有关?(2)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法,选取12人参加志愿者宣传活动.(i)问男、女学生各选取了多少人?(ⅱ)若从这12人中随机选取3人到校广播站开展足球项目的宣传介绍,设选取的3人中女生人数为X,写出X的分布列,并求.附:,其中.0.100.050.0250.010.0052.7063.8415.0246.6357.87921.(12分)已知函数(1)求函数的解析式;(2)解关于的不等式.22.(10分)已知函数.⑴求函数的单调区间;⑵如果对于任意的,总成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】分析:对求导,令,即可求出函数的单调递减区间.详解:函数的定义域为,得到.故选D点睛:本题考查利用导数研究函数的单调性,属基础题.2、B【解题分析】

∵随机抛正方体,有6种等可能的结果,其中正方体落地时“向上面为红色”有2种情况,

∴正方体落地时“向上面为红色”的概率是

.故选B.3、B【解题分析】

利用错位相减法、等比数列的求和公式及复数的周期性进行计算可得答案.【题目详解】解:设,可得:,则,,可得:,可得:,故选:B.【题目点拨】本题主要考查等比数列的求和公式,错位相减法、及复数的乘除法运算,属于中档题.4、D【解题分析】

随机变量服从正态分布,则,利用概率和为1得到答案.【题目详解】随机变量X服从正态分布,

,

答案为D.【题目点拨】本题考查了正态分布,利用正态分布的对称性是解决问题的关键.5、A【解题分析】

设数列{an}的公比为q,由等比数列通项公式可得q4=16,由a3=a1q2,计算可得.【题目详解】因故选:A【题目点拨】本题考查等比数列的性质以及通项公式,属于简单题.6、A【解题分析】

先求出椭圆的普通方程,再求其离心率得解.【题目详解】椭圆的标准方程为,所以c=.所以e=.故答案为A【题目点拨】(1)本题主要考查参数方程和普通方程的互化,考查椭圆的简单几何性质,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)在椭圆中,7、D【解题分析】

先化简与,再根据它们虚部相等求出m的值.【题目详解】由题得,因为复数与的虚部相等,所以.故选D【题目点拨】本题主要考查复数的运算和复数相等的概念,意在考查学生对这些知识的理解掌握水平,属于基础题.8、D【解题分析】

利用直角三角形的边角关系、椭圆的定义离心率计算公式即可得出.【题目详解】在Rt△PF1F2中,∠F1PF2=90°,直线的斜率为故得到∠POF2=60°,∴|PF2|=c,由三角形三边关系得到|PF1|=,又|PF1|+|PF2|=2a=c+,∴.故选:D.【题目点拨】本题考查椭圆的几何性质及其应用,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得(的取值范围).9、B【解题分析】

由题意可得,上、中、下三节的容量成等差数列.再利用等差数列的性质,求出中三节容量,即可得到答案.【题目详解】由题意,上、中、下三节的容量成等差数列,上三节容四升,下三节容二升,则中三节容量为,故选B.【题目点拨】本题主要考查了等差数列的性质的应用,其中解答中熟记等差数列的等差中项公式是解答的关键,着重考查了运算与求解能力,属于基础题.10、C【解题分析】

把已知等式变形,再由复数代数形式的乘除运算化简得答案.【题目详解】,,复数对应的点的坐标为,,在第三象限.故选.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题.11、A【解题分析】

利用集合的交集运算进行求解即可【题目详解】由题可知集合中,集合中求的是值域的取值范围,所以的取值范围为答案选A【题目点拨】求解集合基本运算时,需注意每个集合中求解的是x还是y,求的是定义域还是值域,是点集还是数集等12、D【解题分析】

则函数增;则函数减;则函数减;则函数增;选D.【考点定位】判断函数的单调性一般利用导函数的符号,当导函数大于0则函数递增,当导函数小于0则函数递减二、填空题:本题共4小题,每小题5分,共20分。13、45【解题分析】

通过分步乘法原理即可得到答案.【题目详解】对于英文字母来说,共有5种可能,对于数字来说,共有9种可能,按照分步乘法原理,即可知道共有个不同的编号.【题目点拨】本题主要考查分步乘法原理的相关计算,难度很小.14、4【解题分析】

试题分析:双曲线的右焦点F(,0),渐近线方程为,点P到渐近线的距离恰好跟焦点到渐近线的距离相等,所以P必在过右焦点与一条渐近线平行的直线上,不妨设P在直线上,由方程组得,所以,由方程组得,所以,所以由于,所以.考点:向量共线的应用,双曲线的方程与简单几何性质.【方法点晴】要求的值,就得求出P、Q两点的坐标,可直接设出P点坐标用点到直线的距离公式,也可结合双曲线的几何性质发现P的轨迹,解方程组即得P、Q两点坐标,从而求出两个向量的坐标,问题就解决了.15、36【解题分析】

将两个偶数以及两个偶数之间的奇数当作一个小团体,先进行排列,再将其视为一个元素和剩余两个奇数作全排列即可.【题目详解】根据题意,先选择一个奇数和两个偶数作为一个小团体,再将剩余两个奇数和该小团体作全排列,则满足题意的五位数的个数是种.故答案为:36.【题目点拨】本题考查捆绑法,属排列组合基础题.16、6【解题分析】分析:根据分层抽样的定义直接计算即可.详解:设抽取男生的人数为,因为男生人,女生人,从该班的全体同学中抽取一个容量为的样本,所以,取男生的人数为,故答案为.点睛:本题主要考查分层抽样的应用以及古典概型概率公式的应用,属于中档题.分层抽样适合总体中个体差异明显,层次清晰的抽样,其主要性质是,每个层次,抽取的比例相同.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析;(3)【解题分析】

(1)连接BD与AC交于点O,连接EO,证明EO//PB,由线线平行证明线面平行即可;(2)通过证明CD平面PAD来证明平面平面;(3)以A为坐标原点,所在直线分别为x轴,y轴,z轴建立空间直角坐标系,通过空间向量的方法求二面角的余弦值.【题目详解】(1)证明:连结BD交AC于点O,连结EO.O为BD中点,E为PD中点,∴EO//PB.EO平面AEC,PB平面AEC,∴PB//平面AEC.(2)证明:PA⊥平面ABCD.平面ABCD,∴.又在正方形ABCD中且,∴CD平面PAD.又平面PCD,∴平面平面.(3)如图,以A为坐标原点,所在直线分别为x轴,y轴,z轴建立空间直角坐标系.由PA=AB=2可知A、B、C、D、P、E的坐标分别为A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,1,1).PA平面ABCD,∴是平面ABCD的法向量,=(0,0,2).设平面AEC的法向量为,,,则,即∴令,则.∴,二面角的余弦值为【题目点拨】本题考查线面平行,面面垂直的判定定理,考查用空间向量求二面角,也考查了学生的空间想象能力和计算能力,属于中档题.18、(1).(2).【解题分析】分析:(Ⅰ)利用零点分类讨论法解不等式.(Ⅱ)转化为,再求分段函数的最小值得解.详解:(I)当a=8时,则所以即不等式解集为.(II)令,由题意可知;又因为所以,即.点睛:(1)本题主要考查零点讨论法解不等式,考查不等式的有解问题,意在考查学生对这些知识的掌握水平和分类讨论思想方法.(2)第2问可以转化为,注意是最小值,不是最大值,要理解清楚,这里是有解问题,不是恒成立问题.19、(1)90(2)45【解题分析】

(1)应用排列进行计算;(2)应该用组合来进行计算。【题目详解】(1)选一名正组长和一名副组长,因为正组长与副组长属于不同的职位,所以应该用排列,.(2)选名参加省数学竞赛,都是同样参加数学竞赛,所以应该用组合,.【题目点拨】本题考查了排列和组合的基本概念和应用,属于基础题。20、(1)有(2)(i)男生有9人,女生有3人.(ⅱ)见解析,【解题分析】

(1)套用公式,算出的值与6.635比较大小,即可得到本题答案;(2)(i)由男女的比例为3:1,即可得到本题答案;(ii)根据超几何分布以及离散型随机变量的均值公式,即可得到本题答案.【题目详解】(1)因为,所以有99%的把握认为,是否收看开幕式与性别有关.(2)(ⅰ)根据分层抽样方法得,男生人,女生人,所以选取的12人中,男生有9人,女生有3人.(ⅱ)由题意可知,X的可能取值有0,1,2,3.,,,X0123P∴.【题目点拨】本题主要考查分层抽样,独立性检验的应用和超几何分布以及其分布列均值的求法,考查学生的运算求解能力.21、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论