版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省江阴市普通高中数学高二下期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若直线的参数方程为(为参数),则直线的倾斜角为()A. B. C. D.2.下列函数中,既是奇函数又是上的增函数的是()A. B. C. D.3.在的展开式中,系数最大的项是()A.第3项 B.第4项 C.第5项 D.第6项4.等差数列的前9项的和等于前4项的和,若,则k=()A.10 B.7 C.4 D.35.某校高中三个年级人数饼图如图所示,按年级用分层抽样的方法抽取一个样本,已知样本中高一年级学生有8人,则样本容量为()A.24 B.30 C.32 D.356.已知定义在R上的奇函数f(x)满足,f(-2)=-3,数列{an}是等差数列,若a2=3,a7=13,则f(a1)+f(a2)+f(a3)+…+f(a2018)=()A.-2 B.-3 C.2 D.37.如图,平行六面体中,,,,则()A. B. C. D.8.若圆锥的高为,底面半径为,则此圆锥的表面积为()A. B. C. D.9.已知为的一个对称中心,则的对称轴可能为()A. B. C. D.10.已知a=tan(-π5)A.a>b>c B.c>b>aC.c>a>b D.b>c>a11.已知,且,则等于()A. B. C. D.12.正切函数是奇函数,是正切函数,因此是奇函数,以上推理()A.结论正确 B.大前提不正确 C.小前提不正确 D.以上均不正确二、填空题:本题共4小题,每小题5分,共20分。13.某次试验中,是离散型随机变量,服从分布,该事件恰好发生次的概率是______(用数字作答).14.设随机变量服从正态分布,且,则__________.15.的平方根为______.16.运行如图所示的程序框图,则输出的的值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)选修4-5:不等式选讲已知函数,M为不等式的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b时,.18.(12分)如图,已知长方形中,,,M为DC的中点.将沿折起,使得平面⊥平面.(1)求证:;(2)若点是线段上的一动点,问点在何位置时,二面角的余弦值为.19.(12分)某鲜花批发店每天早晨以每支2元的价格从鲜切花生产基地购入某种玫瑰,经过保鲜加工后全部装箱(每箱500支,平均每支玫瑰的保鲜加工成本为1元),然后以每箱2000元的价格整箱出售.由于鲜花的保鲜特点,制定了如下促销策略:若每天下午3点以前所购进的玫瑰没有售完,则对未售出的玫瑰以每箱1200元的价格降价处理.根据经验,降价后能够把剩余玫瑰全部处理完毕,且当天不再购进该种玫瑰.因库房限制每天最多加工6箱.(1)若某天此鲜花批发店购入并加工了6箱该种玫瑰,在下午3点以前售出4箱,且6箱该种玫瑰被6位不同的顾客购买.现从这6位顾客中随机选取2人赠送优惠卡,求恰好一位是以2000元价格购买的顾客且另一位是以1200元价格购买的顾客的概率:(2)此鲜花批发店统计了100天该种玫瑰在每天下午3点以前的销售量t(单位:箱),统计结果如下表所示(视频率为概率):t/箱456频数30xs①估计接下来的一个月(30天)该种玫瑰每天下午3点前的销售量不少于5箱的天数并说明理由;②记,,若此批发店每天购进的该种玫瑰箱数为5箱时所获得的平均利润最大,求实数b的最小值(不考虑其他成本,为的整数部分,例如:,).20.(12分)在锐角中,角的对边分别为,中线,满足.(1)求;(2)若,求周长的取值范围.21.(12分)学校为了对教师教学水平和教师管理水平进行评价,从该校学生中选出300人进行统计.其中对教师教学水平给出好评的学生人数为总数的,对教师管理水平给出好评的学生人数为总数的,其中对教师教学水平和教师管理水平都给出好评的有120人.(1)填写教师教学水平和教师管理水平评价的列联表:对教师管理水平好评对教师管理水平不满意合计对教师教学水平好评对教师教学水平不满意合计请问是否可以在犯错误概率不超过0.001的前提下,认为教师教学水平好评与教师管理水平好评有关?(2)若将频率视为概率,有4人参与了此次评价,设对教师教学水平和教师管理水平全好评的人数为随机变量.①求对教师教学水平和教师管理水平全好评的人数的分布列(概率用组合数算式表示);②求的数学期望和方差.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)22.(10分)已知数列的前项和为,,().(1)求数列的通项公式;(2)设(),数列的前项和为,证明:().
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
将直线的参数方程化为普通方程,求出斜率,进而得到倾斜角。【题目详解】设直线的倾斜角为,将直线的参数方程(为参数)消去参数可得,即,所以直线的斜率所以直线的倾斜角,故选D.【题目点拨】本题考查参数方程和普通方程的互化以及直线的倾斜角,属于简单题。2、B【解题分析】
分别画出各选项的函数图象,由图象即可判断.【题目详解】由题,画出各选项函数的图象,则选项A为选项B为选项C为选项D为由图象可知,选项B满足既是奇函数又是上的增函数,故选:B【题目点拨】本题考查判断函数的单调性和奇偶性,考查基本初等函数的图象与性质.3、C【解题分析】
先判断二项式系数最大的项,再根据正负号区别得到答案.【题目详解】的展开式中共有8项.由二项式系数特点可知第4项和第5项的二项式系数最大,但第4项的系数为负值,所以的展开式中系数最大的项为第5项.故选C.【题目点拨】本题考查了展开式系数的最大值,先判断二项式系数的最大值是解题的关键.4、A【解题分析】
由等差数列的性质可得,然后再次利用等差数列的性质确定k的值即可.【题目详解】由等差数列的性质可知:,故,则,结合题意可知:.本题选择A选项.【题目点拨】本题主要考查等差数列的性质及其应用,属于中等题.5、C【解题分析】分析:本题考查的知识点是分层抽样,根据分层抽样的方法,由样本中高一年级学生有8人,所占比例为25%,即可计算.详解:由分层抽样的方法可设样本中有高中三个年级学生人数为x人,则,解得:.故选:C.点睛:分层抽样的方法步骤为:首先确定分层抽取的个数,分层后,各层的抽取一定要考虑到个体数目,选取不同的抽样方法,但一定要注意按比例抽取,其中按比例是解决本题的关键.6、B【解题分析】
分析:利用函数的奇偶性和对称性推出周期,求出前三项的值,利用周期化简式子即可.详解:定义在R上的奇函数满足,故周期,数列是等差数列,若,,故,所以:,点睛:函数的周期性,对称性,奇偶性知二推一,已知奇函数,关于轴对称,则,令代入2式,得出,由奇偶性,故周期.7、D【解题分析】
利用,即可求解.【题目详解】,,.故选:D【题目点拨】本题考查了向量加法的三角形法则、平行四边形法则、空间向量的数量积以及向量模的求法,属于基础题.8、B【解题分析】
根据圆锥的高和底面半径求出母线长,分别求出圆锥侧面积和底面积,加和得到结果.【题目详解】由题意可得圆锥的母线长为:圆锥侧面积为:;底面积为:圆锥表面积为:本题正确选项:【题目点拨】本题考查圆锥表面积的求解,关键是熟练掌握圆锥侧面积公式,属于基础题.9、B【解题分析】
由题意首先确定的值,然后求解函数的对称轴即可.【题目详解】由题意可知,当时,,据此可得:,令可得,则函数的解析式为,函数的对称轴满足:,解得:,令可知函数的一条对称轴为,且很明显选项ACD不是函数的对称轴.本题选择B选项.【题目点拨】本题主要考查三角函数解析式的求解,三角函数对称轴方程的求解等知识,意在考查学生的转化能力和计算求解能力.10、D【解题分析】
首先通过诱导公式,化简三个数,然后判断它们的正负性,最后利用商比法判断a,c的大小,最后选出正确答案.【题目详解】a=tan而ac=【题目点拨】本题考查了诱导公式、以及同角三角函数关系,以及商比法判断两数大小.在利用商比法时,要注意分母的正负性.11、A【解题分析】
令,即可求出,由即可求出【题目详解】令,得,所以,故选A。【题目点拨】本题主要考查赋值法的应用。12、C【解题分析】
根据三段论的要求:找出大前提,小前提,结论,再判断正误即可。【题目详解】大前提:正切函数是奇函数,正确;小前提:是正切函数,因为该函数为复合函数,故错误;结论:是奇函数,该函数为偶函数,故错误;结合三段论可得小前提不正确.故答案选C【题目点拨】本题考查简易逻辑,考查三段论,属于基础题。二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
根据二项分布的概率计算公式,代值计算即可.【题目详解】根据二项分布的概率计算公式,可得事件发生2次的概率为故答案为:.【题目点拨】本题考查二项分布的概率计算公式,属基础题.14、【解题分析】分析:根据随机变量服从正态分布,看出这组数据对应的正态曲线的对称轴,根据正态曲线的特点,得到,从而可得结果.详解:随机变量服从正态分布,,得对称轴是,所以,可得,故答案为.点睛:本题考查正态曲线的性质,从形态上看,正态分布是一条单峰,对称呈种形的曲线,其对称轴,并在时取最大值,从点开始,曲线向正负两个方向递减延伸,不断逼近轴,但永不与轴相交,因此说明曲线在正负两个方向都是以轴为渐近线的.15、【解题分析】
根据可得出的平方根.【题目详解】,因此,的平方根为.故答案为.【题目点拨】本题考查负数的平方根的求解,要熟悉的应用,考查计算能力,属于基础题.16、【解题分析】
模拟程序的运行过程,即可得出程序运行后输出的S值.【题目详解】运行该程序框图,,满足执行程序满足执行程序满足执行程序不满足,故输出.故答案为【题目点拨】本题考查了程序框图的运行问题,准确计算是关键,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)详见解析.【解题分析】试题分析:(I)先去掉绝对值,再分,和三种情况解不等式,即可得;(II)采用平方作差法,再进行因式分解,进而可证当,时,.试题解析:(I)当时,由得解得;当时,;当时,由得解得.所以的解集.(Ⅱ)由(Ⅰ)知,当时,,从而,因此【考点】绝对值不等式,不等式的证明.【名师点睛】形如(或)型的不等式主要有两种解法:(1)分段讨论法:利用绝对值号内式子对应的方程的根,将数轴分为,,(此处设)三个部分,在每个部分去掉绝对值号并分别列出对应的不等式进行求解,然后取各个不等式解集的并集.(2)图象法:作出函数和的图象,结合图象求解.18、(1)见解析;(2)为中点.【解题分析】
(1)证明:∵长方形ABCD中,AB=,AD=,M为DC的中点,∴AM=BM=2,∴BM⊥AM.∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,BM⊂平面ABCM∴BM⊥平面ADM∵AD⊂平面ADM∴AD⊥BM.(2)建立如图所示的直角坐标系设,则平面AMD的一个法向量,,设平面AME的一个法向量则取y=1,得所以,因为,求得,所以E为BD的中点.19、(1);(2)①;②【解题分析】
(1)根据古典概型概率公式计算可得;(2)①用100−30可得;②用购进5箱的平均利润>购进6箱的平均利润,解不等式可得.【题目详解】解:(1)设这6位顾客是A,B,C,D,E,F.其中3点以前购买的顾客是A,B,C,D.3点以后购买的顾客是E,F.从这6为顾客中任选2位有15种选法:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),其中恰好一位是以2000元价格购买的顾客,另一位是以1200元价格购买的顾客的有8种:(A,E),(A,F),(B,E),(B,F),(C,E),(C,F),(D,E),(D,F).根据古典概型的概率公式得;(2)①依题意,∴,所以估计接下来的一个月(30天)内该种玫瑰每天下午3点以前的销售量不少于5箱的天数是天;②批发店毎天在购进4箱数量的玫瑰时所获得的平均利润为:4×2000−4×500×3=2000元;批发店毎天在购进5箱数量的玫瑰时所获得的平均利润为:元;批发店毎天在购进6箱数量的玫瑰时所获得的平均利润为:由,解得:,则所以,要求b的最小值,则求的最大值,令,则,明显,则在上单调递增,则在上单调递增,,则b的最小值为.【题目点拨】本题考查了古典概型及其概率计算公式,属中档题.20、(1);(2).【解题分析】
(1)利用,两边平方后,代入,利用余弦定理求得的值,进而求得.(2)利用正弦定理进行转化,结合三角函数值域的求法,求得周长的取值范围.【题目详解】(1)由于是三角形的中线,所以,两边平方并化简得,将代入上式得,故,所以.(2)由正弦定理得,而,所以的周长为,由于三角形是锐角三角形,所以,所以,所以,所以,也即三角形周长的取值范围是.【题目点拨】本小题主要考查向量运算,考查余弦定理、正弦定理解三角形,考查辅助角公式,考查三角函数值域的求法,属于中档题.21、(1)可以在犯错误概率不超过0.001的前提下,认为教师教学水平好评与教师管理水平好评有关.(2)①见解析②,【解题分析】分析:(1)由题意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- NB/T 11539-2024矿用物位传感器通用技术要求
- 中医医学经络腧穴学课件-奇穴
- 《学前社会教育》课件
- 2025届海南省部分学校高三上学期全真模拟(二)历史试卷(解析版)
- 2024-2025学年浙江省台州市十校联考高一上学期期中考试历史试题(解析版)
- 《物流仓储管理》课件
- 单位管理制度集合大全员工管理篇
- 《物流管理运输管理》课件
- 单位管理制度汇编大全员工管理
- 单位管理制度合并汇编【职工管理】
- 海南省琼海市五年级数学期末自测模拟试题详细答案和解析
- 垃圾清运服务投标方案技术方案
- 电子工程师职位合同
- 2025届青海省西宁二十一中学七年级数学第一学期期末考试试题含解析
- 湖北省宜昌市2025届九年级物理第一学期期末达标测试试题含解析
- DL-T5394-2021电力工程地下金属构筑物防腐技术导则
- 儿科护理技术操作规范
- 2024年江苏宿迁经济技术开发区城市管理辅助人员招聘笔试参考题库附带答案详解
- 马拉松赛事运营服务方案
- 阳光少年体验营辅导员工作总结
- 国家能源集团考试试题
评论
0/150
提交评论