北京市101中学2024届数学高二第二学期期末经典试题含解析_第1页
北京市101中学2024届数学高二第二学期期末经典试题含解析_第2页
北京市101中学2024届数学高二第二学期期末经典试题含解析_第3页
北京市101中学2024届数学高二第二学期期末经典试题含解析_第4页
北京市101中学2024届数学高二第二学期期末经典试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市101中学2024届数学高二第二学期期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲、乙、丙三人到三个不同的景点旅游,每人只去一个景点,设事件为“三个人去的景点各不相同”,事件为“甲独自去一个景点,乙、丙去剩下的景点”,则等于()A. B. C. D.2.定义1分的地球球心角所对的地球大圆弧长为1海里.在北纬45°圈上有甲、乙两地,甲地位于东经120°,乙位于西经150°,则甲乙两地在球面上的最短距离为()A.5400海里 B.2700海里 C.4800海里 D.3600海里3.如图,在长方体中,若,,则异面直线和所成角的余弦值为()A. B. C. D.4.将4名学生分配到5间宿舍中的任意2间住宿,每间宿舍2人,则不同的分配方法有()A.240种 B.120种 C.90种 D.60种5.甲乙丙丁四名学生报名参加四项体育比赛,每人只报一项,记事件“四名同学所报比赛各不相同”,事件“甲同学单独报一项比赛”,则()A. B. C. D.6.“因为指数函数是增函数(大前提),而是指数函数(小前提),所以函数是增函数(结论)”,上面推理的错误在于A.大前提错误导致结论错 B.小前提错误导致结论错C.推理形式错误导致结论错 D.大前提和小前提错误导致结论错7.若如下框图所给的程序运行结果为,那么判断框中应填入的关于的条件是()A. B. C. D.8.关于x的不等式的解集中,恰有3个整数,则a的取值范围是()A. B. C. D.(4,5)9.已知集合,则A. B.C. D.R10.已知函数的最小正周期为,且其图象向右平移个单位后得到函数的图象,则()A. B. C. D.11.抛物线和直线所围成的封闭图形的面积是()A. B. C. D.12.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积,求其直径的一个近似公式,人们还用过一些类似的近似公式,根据判断,下列近似公式中最精确的一个是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某篮球运动员在三分线投球的命中率是,他投球10次,恰好投进3个球的概率为________(用数值作答).14.给出定义:对于三次函数设是函数的导数,是的导数,若方程有实数解,则称点为函数的“拐点”,经过研究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.已知函数.设.若则__________.15.某单位在名男职工和名女职工中,选取人参加一项活动,要求男女职工都有,则不同的选取方法总数为______.16.甲、乙、丙三位同学被问到是否去过三个城市时,甲说:我去过的城市比乙多,但没去过城市;乙说:我没去过城市.丙说:我们三个去过同一城市.由此可判断乙去过的城市为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,且曲线在点处的切线与直线平行.(1)求函数的单调区间;(2)若关于的不等式恒成立,求实数的取值范围.18.(12分)在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知圆的直角坐标方程为.求圆的极坐标方程;设圆与圆:交于两点,求.19.(12分)在直角坐标系中,曲线的参数方程是(为参数),以该直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.(Ⅰ)写出曲线的普通方程和直线的直角坐标方程;(Ⅱ)设点,直线与曲线相交于,两点,且,求实数的值.20.(12分)已知函数.(1)若,当时,求证:.(2)若函数在为增函数,求的取值范围.21.(12分)已知.(1)若,求函数的单调递增区间;(2)若,且函数在区间上单调递减,求的值.22.(10分)已知命题函数是上的奇函数,命题函数的定义域和值域都是,其中.(1)若命题为真命题,求实数的值;(2)若“且”为假命题,“或”为真命题,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

这是求甲独自去一个景点的前提下,三个人去的景点不同的概率,求出相应的基本事件的个数,即可得出结果.【题目详解】甲独自去一个景点,则有3个景点可选,乙、丙只能在剩下的两个景点选择,根据分步乘法计数原理可得,对应的基本事件有种;另外,三个人去不同景点对应的基本事件有种,所以,故选C.【题目点拨】本题主要考查条件概率,确定相应的基本事件个数是解决本题的关键.2、D【解题分析】

求出甲乙两地的球心角,根据比例关系即可得出答案。【题目详解】地球表面上从甲地(北纬45°东经120°)到乙地(北纬45°西经150°),乙两地对应的AB的纬圆半径是,经度差纬90°,所以AB=R,球心角为60°,最短距离为【题目点拨】求出甲乙两地的球心角,根据比例关系即可得出答案。3、D【解题分析】

连结,可证明是平行四边形,则,故的余弦值即为异面直线和所成角的余弦值,利用余弦定理可得结果.【题目详解】连结,由题得,故是平行四边形,,则的余弦值即为所求,由,可得,,故有,解得,故选D.【题目点拨】本题考查异面直线的夹角的余弦值和余弦定理,常见的方法是平移直线,让两条直线在同一平面中,再求夹角的余弦值.4、D【解题分析】

根据分步计数原理分两步:先安排宿舍,再分配学生,继而得到结果.【题目详解】根据题意可以分两步完成:第一步:选宿舍有10种;第二步:分配学生有6种;根据分步计数原理有:10×6=60种.故选D.【题目点拨】本题考查排列组合及计数原理的实际应用,考查了分析问题解决问题的能力,属于基础题.5、D【解题分析】

求出,根据条件概率公式即可得解.【题目详解】由题:,.故选:D【题目点拨】此题考查求条件概率,关键在于准确求出AB的概率和B的概率,根据条件概率公式计算求解.6、A【解题分析】试题分析:大前提:指数函数是增函数错误,只有在时才是增函数考点:推理三段论7、D【解题分析】分析:根据赋值框中对累加变量和循环变量的赋值,先判断后执行,假设满足条件,依次执行循环,到累加变量S的值为35时,再执行一次k=k+1,此时判断框中的条件不满足,由此可以得到判断框中的条件.详解:框图首先给累加变量S赋值1,给循环变量k赋值1.判断1>6,执行S=1+1=11,k=1﹣1=9;判断9>6,执行S=11+9=20,k=9﹣1=8;判断8>6,执行S=20+8=28,k=8﹣1=7;判断7>6,执行S=28+7=35,k=6;判断6≤6,输出S的值为35,算法结束.所以判断框中的条件是k>6?.故答案为:D.点睛:本题考查了程序框图中的循环结构,考查了当型循环,当型循环是先判断后执行,满足条件执行循环,不满足条件时,算法结束,此题是基础题.8、A【解题分析】

不等式等价转化为,当时,得,当时,得,由此根据解集中恰有3个整数解,能求出的取值范围。【题目详解】关于的不等式,不等式可变形为,当时,得,此时解集中的整数为2,3,4,则;当时,得,,此时解集中的整数为-2,-1,0,则故a的取值范围是,选:A。【题目点拨】本题难点在于分类讨论解含参的二次不等式,由于二次不等式对应的二次方程的根大小不确定,所以要对和1的大小进行分类讨论。其次在观察的范围的时候要注意范围的端点能否取到,防止选择错误的B选项。9、D【解题分析】

先解出集合与,再利用集合的并集运算得出.【题目详解】,,,故选D.【题目点拨】本题考查集合的并集运算,在计算无限数集时,可利用数轴来强化理解,考查计算能力,属于基础题.10、C【解题分析】

利用函数的周期求出的值,利用逆向变换将函数的图象向左平行个单位长度,得出函数的图象,根据平移规律得出的值.【题目详解】由于函数的周期为,,则,利用逆向变换,将函数的图象向左平移个单位长度,得到函数的图象,所以,因此,,故选:C.【题目点拨】本题考查正弦型函数周期的计算,同时也考查了三角函数图象的平移变换,本题利用逆向变换求函数解析式,可简化计算,考查推理能力与运算求解能力,属于中等题.11、C【解题分析】

先计算抛物线和直线的交点,再用定积分计算面积.【题目详解】所围成的封闭图形的面积是:故答案为C【题目点拨】本题考查了定积分的应用,意在考查学生应用能力和计算能力.12、B【解题分析】

利用球体的体积公式得,得出的表达式,再将的近似值代入可得出的最精确的表达式.【题目详解】由球体的体积公式得,,,,,,与最为接近,故选C.【题目点拨】本题考查球体的体积公式,解题的关键在于理解题中定义,考查分析问题和理解问题的能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

直接运用独立重复试验次,有次发生的事件的概率公式进行求解.【题目详解】投球10次,恰好投进3个球的概率为,故答案为.【题目点拨】本题考查了独立重复试验次,有次发生的事件的概率公式,考查了数学运算能力.14、-4037【解题分析】

由题意对已知函数求两次导数,令二阶导数为零,即可求得函数的中心对称,即有,,借助倒序相加的方法,可得进而可求的解析式,求导,当代入导函数解得,计算求解即可得出结果.【题目详解】函数函数的导数由得解得,而故函数关于点对称,故,两式相加得,则.同理,,,令,则,,故函数关于点对称,,两式相加得,则.所以当时,解得:,所以则.故答案为:-4037.【题目点拨】本题考查对新定义的理解,考查二阶导数的求法,仔细审题是解题的关键,考查倒序法求和,难度较难.15、.【解题分析】

在没有任何限制的条件下,减去全是女职工的选法种数可得出结果.【题目详解】由题意可知,全是女职工的选法种数为,因此,男女职工都有的选法种数为,故答案为.【题目点拨】本题考查组合问题,利用间接法求解能简化分类讨论,考查计算能力,属于中等题.16、A【解题分析】试题分析:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A考点:进行简单的合情推理三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递减区间是,单调递增区间是;(2).【解题分析】

(1)根据切线的斜率可求出,得,求导后解不等式即可求出单调区间.(2)原不等式可化为恒成立,令,求导后可得函数的最小值,即可求解.【题目详解】(1)函数的定义域为,,又曲线在点处的切线与直线平行所以,即,由且,得,即的单调递减区间是由得,即的单调递增区间是.(2)由(1)知不等式恒成立可化为恒成立即恒成立令当时,,在上单调递减.当时,,在上单调递增.所以时,函数有最小值由恒成立得,即实数的取值范围是.【题目点拨】本题主要考查了导数的几何意义,利用导数求函数的单调区间,最值,恒成立问题,属于中档题.18、;4.【解题分析】

(1)直接通过即可得到答案;(2)可先求出圆的标准方程,求出两圆交点,于是可得答案.【题目详解】根据题意,可得圆的极坐标方程为:即;圆的直角坐标方程为:,联立,两式相减,可得,即代入第一条式子,可解得或,于是.【题目点拨】本题主要考查直角坐标方程和极坐标方程的互化,圆的交点计算,意在考查学生的转化能力,计算能力,难度中等.19、(Ⅰ);(Ⅱ)或或【解题分析】

(Ⅰ)根据参数方程与普通方程互化原则、极坐标与直角坐标互化原则可直接求得结果;(Ⅱ)为直线上一点,以为定点可写出直线参数方程标准形式,将直线参数方程代入曲线的普通方程进行整理,从而利用参数的几何意义可构造方程,从而得到关于的方程,解方程求得结果.【题目详解】(Ⅰ)由得:即曲线的普通方程为:由,得:直线的直角坐标方程为:,即(Ⅱ)直线的参数方程可以写为:(为参数)设两点对应的参数分别为将直线的参数方程代入曲线的普通方程可得:即:,解得:或或【题目点拨】本题考查参数方程化普通方程、极坐标方程化直角坐标方程、直线参数方程的应用,关键是能够利用直线参数方程中参数的几何意义,将距离之和转变为韦达定理的形式,从而可构造出关于所求变量的方程,属于常考题型.20、(1)见证明;(2)【解题分析】

(1)时,设,对函数求导得到函数的单调性,得到函数的最值进而得证;(2)原函数单调递增,即恒成立,变量分离,转化为函数最值问题.【题目详解】(1)时,设.则,在单调递增.即.(2)恒成立,即对恒成立.∵时,(当且仅当取等号)∴【题目点拨】这个题目考查了不等式证明问题以及恒成立求参的问题,不等式的证明,常见的方法是,构造函数,转化为函数最值问题;恒成立求参,常采用的方法是变量分离,转化为函数最值问题.21、(1)单调递增区间为(2)【解题分析】

(1)求导分析函数单调性即可.(2)由题可知在区间上恒成立可得,即可得再结合即可.【题目详解】解:(1)由,得函数的单调递增区间为.(2)若函数在区间上单调递减,则,则,因为,所以,又,所以.【题目点拨】本题主要考查了利用导数求解函数的单调区间问题,同时也考查了利用函数的单调区间求解参数范围的问题,需要利用恒成立问题求最值,属于基础题.22、(1);(2).【解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论