版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省哈尔滨市南岗区三中2024届数学高二第二学期期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在极坐标系中,曲线的极坐标方程为,曲线的极坐标方程为。若射线与曲线和曲线分别交于两点(除极点外),则等于()A. B. C.1 D.2.定义运算,则函数的图象是().A. B.C. D.3.已知曲线,给出下列命题:①曲线关于轴对称;②曲线关于轴对称;③曲线关于原点对称;④曲线关于直线对称;⑤曲线关于直线对称,其中正确命题的个数是()A.1 B.2 C.3 D.44.如图所示,阴影部分的面积为()A. B.1 C. D.5.下列四个不等式:①;②;③;④,其中恒成立的个数是()A.1 B.2 C.3 D.46.如果函数在上的图象是连续不断的一条曲线,那么“”是“函数在内有零点”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件7.角的终边上一点,则()A. B. C.或 D.或8.若cos(α+π4)=1A.718 B.23 C.4-9.若函数在区间上单调递增,则实数的取值范围是()A. B. C. D.10.已知全集U=R,集合A={0,1,2,3,4,5},B={x∈R|x≥3},则A∩CA.{4,5} B.{3,4,5} C.{0,1,2} D.{0,1,2,3}11.设为两条不同的直线,为两个不同的平面,下列命题中正确的是()A.若,,,则 B.若,,,则C.若,,,则 D.若,,,则12.我市拟向新疆哈密地区的三所中学派出5名教师支教,要求每所中学至少派遣一名教师,则不同的派出方法有()A.300种 B.150种 C.120种 D.90种二、填空题:本题共4小题,每小题5分,共20分。13.设,则等于_________.14.若函数是偶函数,则实数的值为______.15.中,,则边上中线的长为_____.16.的展开式中的系数是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线与抛物线交于,两点,点为线段的中点.(I)当直线经过抛物线的焦点,时,求点的横坐标;(Ⅱ)若,求点横坐标的最小值,井求此时直线的方程.18.(12分)已知函数.[来源:](1)当时,解不等式;(2)若,求实数的取值范围.19.(12分)在平面直角坐标系中,已知直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.曲线的极坐标方程是.(1)写出曲线的直角坐标方程和直线的普通方程;(2)设直线与曲线交于,两点,求的面积.20.(12分)在国家积极推动美丽乡村建设的政策背景下,各地根据当地生态资源打造了众多特色纷呈的乡村旅游胜地.某人意图将自己位于乡村旅游胜地的房子改造成民宿用于出租,在旅游淡季随机选取100天,对当地已有的六间不同价位的民宿进行跟踪,统计其出租率(),设民宿租金为(单位:元/日),得到如图所示的数据散点图.(1)若用“出租率”近似估计旅游淡季民宿每天租出去的概率,求租金为388元的那间民宿在淡季内的三天中至少有2天闲置的概率.(2)①根据散点图判断,与哪个更适合于此模型(给出判断即可,不必说明理由)?根据判断结果求回归方程;②若该地一年中旅游淡季约为280天,在此期间无论民宿是否出租,每天都要付出的固定成本,若民宿出租,则每天需要再付出的日常支出成本.试用①中模型进行分析,旅游淡季民宿租金约定为多少元时,该民宿在这280天的收益达到最大?附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为;.参考数据:记,,,,,,,,,.21.(12分)一辆汽车前往目的地需要经过个有红绿灯的路口.汽车在每个路口遇到绿灯的概率为(可以正常通过),遇到红灯的概率为(必须停车).假设汽车只有遇到红灯或到达目的地才停止前进,用随机变量表示前往目的地途中遇到红灯数和绿灯数之差的绝对值.(1)求汽车在第个路口首次停车的概率;(2)求的概率分布和数学期望.22.(10分)已知复数为虚数单位.(1)若复数对应的点在第四象限,求实数的取值范围;(2)若,求的共轭复数.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
把分别代入和,求得的极经,进而求得,得到答案.【题目详解】由题意,把代入,可得,把代入,可得,结合图象,可得,故选A.【题目点拨】本题主要考查了简单的极坐标方程的应用,以及数形结合法的解题思想方法,着重考查了推理与运算能力,属于基础题.2、A【解题分析】
由已知新运算的意义就是取得中的最小值,因此函数,只有选项中的图象符合要求,故选A.3、C【解题分析】
根据定义或取特殊值对曲线的对称性进行验证,可得出题中正确命题的个数.【题目详解】在曲线上任取一点,该点关于轴的对称点的坐标为,且,则曲线关于轴对称,命题①正确;点关于轴的对称点的坐标为,且,则曲线关于轴对称,命题②正确;点关于原点的对称点的坐标为,且,则曲线关于原点对称,命题③正确;在曲线上取点,该点关于直线的对称点坐标为,由于,则曲线不关于直线对称,命题④错误;在曲线上取点,该点关于直线的对称点的坐标为,由于,则曲线不关于直线对称,命题⑤错误.综上所述,正确命题的个数为.故选:C.【题目点拨】本题考查曲线对称性的判定,一般利用对称性的定义以及特殊值法进行判断,考查推理能力,属于中等题.4、B【解题分析】如图所示轴与函数围成的面积为,因此故选B.5、C【解题分析】
依次判断每个选项的正误,得到答案.【题目详解】①,当时等号成立,正确②,时不成立,错误③,时等号成立.正确④,时等号成立,正确故答案选C【题目点拨】本题考查了不等式性质,绝对值不等式,均值不等式,综合性较强,是不等式的常考题型.6、A【解题分析】
由零点存在性定理得出“若,则函数在内有零点”举反例即可得出正确答案.【题目详解】由零点存在性定理可知,若,则函数在内有零点而若函数在内有零点,则不一定成立,比如在区间内有零点,但所以“”是“函数在内有零点”的充分而不必要条件故选:A【题目点拨】本题主要考查了充分不必要条件的判断,属于中档题.7、D【解题分析】
根据三角函数的定义求出,注意讨论的正负.【题目详解】的终边上一点,则,,所以.故应选D.【题目点拨】本题考查三角函数的定义,解题时要注意分类讨论,即按参数的正负分类.8、C【解题分析】分析:利用同角三角函数的基本关系式sin(π4+α)详解:因为cos(则0<π4+α<则sin[(故选C.点睛:本题主要考查了同角三角函数的基本关系式,以及两角差的正弦函数公式的应用,其中熟记三角恒等变换的公式是化简求值的关键,着重考查了推理与运算能力.9、D【解题分析】
试题分析:,∵函数在区间单调递增,∴在区间上恒成立.∴,而在区间上单调递减,∴.∴的取值范围是.故选D.考点:利用导数研究函数的单调性.10、C【解题分析】
通过补集的概念与交集运算即可得到答案.【题目详解】根据题意得CUB=x|x<3,故【题目点拨】本题主要考查集合的运算,难度很小.11、C【解题分析】
通过作图的方法,可以逐一排除错误选项.【题目详解】如图,相交,故A错误如图,相交,故B错误D.如图,相交,故D错误故选C.【题目点拨】本题考查直线和平面之间的位置关系,属于基础题.12、B【解题分析】分析:根据题意,先选后排.①先选,将5名教师分成三组,有两种方式,即1,1,3与1,2,2,注意去除重复部分;②后排,将分好的三组全排列,即可得到答案.详解:根据题意:分两步计算(1)将5名教师分成三组,有两种方式即1,1,3与1,2,2;①分成1,1,3三组的方法有②分成1,2,2三组的方法有一共有种的分组方法;(2)将分好的三组全排列有种方法.则不同的派出方法有种.故选B.点睛:对于排列组合混合问题,可先选出元素,再排列。二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】设,则,则.应填答案。14、【解题分析】
根据偶函数的定义,先得到,化简整理,得到,即可求出结果.【题目详解】因为函数是偶函数,所以,即,即,整理得,所以.故答案为:.【题目点拨】本题主要考查由函数奇偶性求参数的问题,熟记偶函数的概念即可,属于基础题型.15、【解题分析】
通过余弦定理可以求出的长,而,用余弦定理求出的表达式,代入上式可以直接求出的长.【题目详解】由余弦定理可知:,设,由余弦定理可知:而,即解得,故边上中线的长为.【题目点拨】本题考查了利用余弦定理求三角形中线长的问题.本题也可以应用中点三角形来求解,过程如下:延长至,使得,易证出,,由余弦定理可得:..16、243【解题分析】分析:先得到二项式的展开式的通项,然后根据组合的方式可得到所求项的系数.详解:二项式展开式的通项为,∴展开式中的系数为.点睛:对于非二项式的问题,解题时可转化为二项式的问题处理,对于无法转化为二项式的问题,可根据组合的方式“凑”出所求的项或其系数,此时要注意考虑问题的全面性,防止漏掉部分情况.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I)2;(Ⅱ),或.【解题分析】
(Ⅰ)设,,由抛物线的定义得出,再利用中点坐标公式可求出线段的中点的横坐标;(Ⅱ)设直线的方程为,将直线的方程与抛物线的方程联立,并列出韦达定理,利用弦长公式并结合条件,得出,再利用韦达定理得出点的横坐标关于的表达式,可求出点的横坐标的最小值,求出此时和的值,可得出直线的方程.【题目详解】(Ⅰ)设,,所以,所以;(Ⅱ)设直线,由,得,所以,.所以.所以,所以,所以,此时,,所以或.【题目点拨】本题考查抛物线的定义,考查直线与抛物线的弦长的最值问题,解决这类问题的常用办法就是将直线与圆锥曲线的方程联立,利用韦达定理设而不求的思想进行求解,难点在于化简计算,属于中等题.18、【解题分析】试题分析:(1)当时,,根据绝对值的几何意义按,,分类讨论得到:,然后分区间解不等式或或,得到的范围分别为或或,所以;(2)根据绝对值不等式的性质:,,则由,转化为,所以或,则或。试题解析:(1)当时,,当时,,所以。故;当时,恒成立;当时,,所以。故。综上可知。(2)∵,由题意有,∴,即。考点:1.不等式的解法;2.不等式的性质。19、(1)曲线的直角坐标方程为;直线的普通方程为;(2).【解题分析】
(1)由极坐标与直角坐标的互化公式,即可得出曲线的直角坐标方程;根据直线的参数方程,消去参数,即可得到普通方程;(2)先由题意,先设,对应的参数分别为,,将直线的参数方程化为,代入,根据参数下的弦长公式求出,再由点到直线距离公式,求出点到直线的距离,进而可求出三角形的面积.【题目详解】(1)由得,即,即曲线的直角坐标方程为;由消去可得:,即直线的普通方程为;(2)因为直线与曲线交于,两点,设,对应的参数分别为,,由可化为,代入得,,则有,,因此,又点到直线的距离为,因此的面积为.【题目点拨】本题主要考查参数方程与普通方程的互化,极坐标方程与直角坐标方程的互化,以及参数下的弦长问题,属于常考题型.20、(1)(2)①更适合,②181元【解题分析】
(1)三天中至少有2天闲置的即为3天中有两天闲置或者3天都闲置,又每天的出租率为0.2,根据二项分布的相关知识即可求出概率;(2)①根据散点图的分布情况,各散点连线更贴近的图象,故的拟合效果更好,代入公式求出回归方程即可;②将收益表示为租金的函数,用函数单调性处理即可.【题目详解】(1)三天中至少有2天闲置的反面为3天中最多有一天能够租出,又每天的出租率为0.2,所以3天中至少有2天闲置的概率:.(2)①根据散点图的分布情况,各散点连线更贴近的图象,故的拟合效果更好,依题意,,,所以,所以,所以回归方程为.②设旅游淡季民宿租金为,则淡季该民宿的出租率,所以该民宿在这280天的收益:,所以,令得,,所以,且当时,时,,所以在上单调递增,在上单调递减,所以当时,存在最大值,所以旅游淡季民宿租金约定为181元时,该民宿在这280天的收益达到最大.【题目点拨】本题考查线性回归方程,二项分布及其概率计算公式,考查分析求解及转化能力,属于中等题.21、(1);(2)分布列见解析,数学期望.【解题分析】
(1)汽车在第3个路口首次停车是指汽车在前两个路口都遇到绿灯,在第3个路口遇到绿灯,由此利用相互独立事件概率乘法公式能求出汽车在第3个路口首次停车的概率.(2)设前往目的地途中遇到绿灯数为,则,用随机变量表示前往目的地途中遇到红灯数和绿灯数之差的绝对值.的可能取值为0,2,4,,,,由此能求出的概率分布列和数学期望.【题目详解】解:(1)由题意知汽车在前两个路口都遇到绿灯,在第3个路口遇到绿灯,汽车在第3个路口首次停车的概率为:.(2)设前往目的地途中遇到绿灯数为,则,用随机变量表示前往目的地
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小半径曲线盾构隧道掘进对周围复杂环境影响研究
- 基于2025年度的加工承揽合同安全监督管理2篇
- 安徽数学二年级数学试卷
- Z公司精益成本管理优化研究
- 潮州暑假招生数学试卷
- 2025年度交通安全设施生产与安装合同4篇
- 二零二四年度医疗设备采购与技术支持合同
- 二零二五版绿色施工基坑监测与环保服务合同正范2篇
- 生物炭-铁复合材料对重金属污染土壤的修复及微生物的影响研究
- 作为竞争对手的外国运动员代言效果
- 2024年高考语文备考之常考作家作品(下):中国现当代、外国
- 《装配式蒸压加气混凝土外墙板保温系统构造》中
- T-CSTM 01124-2024 油气管道工程用工厂预制袖管三通
- 2019版新人教版高中英语必修+选择性必修共7册词汇表汇总(带音标)
- 新译林版高中英语必修二全册短语汇总
- 基于自适应神经网络模糊推理系统的游客规模预测研究
- 河道保洁服务投标方案(完整技术标)
- 品管圈(QCC)案例-缩短接台手术送手术时间
- 精神科病程记录
- 阅读理解特训卷-英语四年级上册译林版三起含答案
- 清华大学考博英语历年真题详解
评论
0/150
提交评论