2024届福建省南安市柳城中学数学高二下期末质量跟踪监视模拟试题含解析_第1页
2024届福建省南安市柳城中学数学高二下期末质量跟踪监视模拟试题含解析_第2页
2024届福建省南安市柳城中学数学高二下期末质量跟踪监视模拟试题含解析_第3页
2024届福建省南安市柳城中学数学高二下期末质量跟踪监视模拟试题含解析_第4页
2024届福建省南安市柳城中学数学高二下期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省南安市柳城中学数学高二下期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数至少存在一个零点,则的取值范围为()A. B. C. D.2.现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是A.152 B.126 C.90 D.543.如图所示十字路口来往的车辆,如果不允许回头,共有不同的行车路线有()A.24种 B.16种 C.12种 D.10种4.函数的部分图像可能是()A. B. C. D.5.“k>1”是“函数f(x)=kx-lnx在区间A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.若是小于的正整数,则等于()A. B. C. D.7.函数的一个零点所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)8.已知,,,则实数的大小关系是()A. B. C. D.9.圆截直线所得的弦长为,则()A. B. C. D.210.若角为三角形的一个内角,并且,则()A. B. C. D.11.在平面直角坐标系中,曲线的参数方程为(为参数),直线的方程为,则曲线上的点到直线的距离的最小值是()A. B. C. D.12.球的体积是,则此球的表面积是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若关于x的实系数一元二次方程x2+px+q=0有一个根为1+i,则14.在中,内角、、满足不等式;在四边形中,内角、、、满足不等式;在五边形中,内角、、、、满足不等式.猜想,在边形中,内角满足不等式__________.15.先后掷骰子(骰子的六个面上分别标有、、、、、个点)两次,落在水平桌面后,记正面朝上的点数分别为,,设事件为“为偶数”,事件为“,中有偶数且”,则概率等于_________.16.已知直线:,抛物线:图像上的一动点到直线与到轴距离之和的最小值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,直三棱柱的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱的长为5.(1)求三棱柱的体积;(2)设M是BC中点,求直线与平面所成角的大小.18.(12分)某鲜花批发店每天早晨以每支2元的价格从鲜切花生产基地购入某种玫瑰,经过保鲜加工后全部装箱(每箱500支,平均每支玫瑰的保鲜加工成本为1元),然后以每箱2000元的价格整箱出售.由于鲜花的保鲜特点,制定了如下促销策略:若每天下午3点以前所购进的玫瑰没有售完,则对未售出的玫瑰以每箱1200元的价格降价处理.根据经验,降价后能够把剩余玫瑰全部处理完毕,且当天不再购进该种玫瑰.因库房限制每天最多加工6箱.(1)若某天此鲜花批发店购入并加工了6箱该种玫瑰,在下午3点以前售出4箱,且6箱该种玫瑰被6位不同的顾客购买.现从这6位顾客中随机选取2人赠送优惠卡,求恰好一位是以2000元价格购买的顾客且另一位是以1200元价格购买的顾客的概率:(2)此鲜花批发店统计了100天该种玫瑰在每天下午3点以前的销售量t(单位:箱),统计结果如下表所示(视频率为概率):t/箱456频数30xs①估计接下来的一个月(30天)该种玫瑰每天下午3点前的销售量不少于5箱的天数并说明理由;②记,,若此批发店每天购进的该种玫瑰箱数为5箱时所获得的平均利润最大,求实数b的最小值(不考虑其他成本,为的整数部分,例如:,).19.(12分)在直角坐标系xOy中,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C的参数方程为(θ为参数),直线l的极坐标方程为ρcos=2.(1)写出曲线C的普通方程和直线l的直角坐标方程;(2)求曲线C上的点到直线l的最大距离.20.(12分)若,且.(1)求;(2)归纳猜想通项公式.21.(12分)甲乙两名选手在同一条件下射击,所得环数的分布列分别为678910P0.160.140.420.10.18678910P0.190.240.120.280.17(I)分别求两名选手射击环数的期望;(II)某比赛需从二人中选一人参赛,已知对手的平均水平在7.5环左右,你认为选谁参赛获胜可能性更大一些?22.(10分)已知函数.(1)当时,求的解集;(2)若恒成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

将条件转化为有解,然后利用导数求出右边函数的值域即可.【题目详解】因为函数至少存在一个零点所以有解即有解令,则因为,且由图象可知,所以所以在上单调递减,令得当时,单调递增当时,单调递减所以且当时所以的取值范围为函数的值域,即故选:A【题目点拨】1.本题主要考查函数与方程、导数与函数的单调性及简单复合函数的导数,属于中档题.2.若方程有根,则的范围即为函数的值域2、B【解题分析】试题分析:根据题意,按甲乙的分工情况不同分两种情况讨论,①甲乙一起参加除了开车的三项工作之一,②甲乙不同时参加一项工作;分别由排列、组合公式计算其情况数目,进而由分类计数的加法公式,计算可得答案.解:根据题意,分情况讨论,①甲乙一起参加除了开车的三项工作之一:C31×A33=18种;②甲乙不同时参加一项工作,进而又分为2种小情况;1°丙、丁、戌三人中有两人承担同一份工作,有A32×C32×A22=3×2×3×2=36种;2°甲或乙与丙、丁、戌三人中的一人承担同一份工作:A32×C31×C21×A22=72种;由分类计数原理,可得共有18+36+72=126种,故选B.考点:排列、组合的实际应用.3、C【解题分析】根据题意,车的行驶路线起点有4种,行驶方向有3种,所以行车路线共有种,故选C.4、B【解题分析】

先判断函数奇偶性,再根据存在多个零点导致存在多个零点,即可判断出结果.【题目详解】∵,∴为奇函数,且存在多个零点导致存在多个零点,故的图像应为含有多个零点的奇函数图像.故选B.【题目点拨】本题主要考查函数图像的识别,熟记函数性质即可,属于常考题型.5、A【解题分析】分析:求出导函数f'(x),若函数f(x)=kx-lnx在(1,+∞)单调递增,可得f'(x)详解:f'(x)=k-1x,

∵若函数函数f(x)=kx-lnx在(1,+∞)单调递增,

∴f'(x)≥0在区间(1,+∞)上恒成立.

∴k≥1x,而y=1x在区间(1,+∞)上单调递减,

∴点睛:本题考查充分不必要条件的判定,考查利用导数研究函数的单调性、恒成立问题的等价转化方法,属中档题.6、D【解题分析】

利用排列数的定义可得出正确选项.【题目详解】,由排列数的定义可得.故选:D.【题目点拨】本题考查排列数的表示,解题的关键就是依据排列数的定义将代数式表示为阶乘的形式,考查分析问题和解决问题的能力,属于中等题.7、C【解题分析】

根据函数零点的判定定理进行判断即可【题目详解】是连续的减函数,又可得f(2)f(3)<0,∴函数f(x)的其中一个零点所在的区间是(2,3)故选C【题目点拨】本题考查了函数零点的判定定理,若函数单调,只需端点的函数值异号即可判断零点所在区间,是一道基础题.8、A【解题分析】

容易得出30.6>1,0<0.63<1,log0.63<0,从而可得出a,b,c的大小关系.【题目详解】∵30.6>30=1,0<0.63<0.60=1,log0.63<log0.61=0;∴a>b>c.故选:A.【题目点拨】本题考查指数函数和对数函数的单调性,熟记单调性是关键,是基础题9、A【解题分析】

将圆的方程化为标准方程,结合垂径定理及圆心到直线的距离,即可求得的值.【题目详解】圆,即则由垂径定理可得点到直线距离为根据点到直线距离公式可知,化简可得解得故选:A【题目点拨】本题考查了圆的普通方程与标准方程的转化,垂径定理及点到直线距离公式的应用,属于基础题.10、A【解题分析】分析:利用同角关系,由正切值得到正弦值与余弦值,进而利用二倍角余弦公式得到结果.详解:∵角为三角形的一个内角,且,∴∴故选:A点睛:本题考查了同角基本关系式,考查了二倍角余弦公式,考查了计算能力,属于基础题.11、B【解题分析】

设曲线上任意一点的坐标为,利用点到直线的距离公式结合辅助角公式可得出曲线上的点到直线的距离的最小值.【题目详解】设曲线上任意一点的坐标为,所以,曲线上的一点到直线的距离为,当时,取最小值,且,故选:B.【题目点拨】本题考查椭圆参数方程的应用,考查椭圆上的点到直线距离的最值问题,解题时可将椭圆上的点用参数方程表示,利用三角恒等变换思想求解,考查运算求解能力,属于中等题.12、B【解题分析】

先计算出球的半径,再计算表面积得到答案.【题目详解】设球的半径为R,则由已知得,解得,故球的表面积.故选:【题目点拨】本题考查了圆的体积和表面积的计算,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、0【解题分析】

由题意可得1-i也是实系数一元二次方程x2+px+q=0的一个虚数根,利用一元二次方程根与系数的关系求出p和q的值,即可求得p+q【题目详解】由于复数1+i是实系数一元二次方程x2+px+q=0的一个虚数根,

故1-i也是实系数一元二次方程x2+px+q=0的一个虚数根,

1+i+1-i=-p,(1+i)(1-i)=q,

故q=-2,p=2,故p+q=0【题目点拨】本题主要考查实系数的一元二次方程虚根成对定理,一元二次方程根与系数的关系,属于基础题.14、【解题分析】

观察分子与多边形边的关系及分母中的系数与多边形边的关系,即可得到答案。【题目详解】在中不等式成立,在四边形中不等式成立,在五边形中不等式成立,所以在边形中不等式成立【题目点拨】本题考查归纳推理,属于简单题。15、【解题分析】试题分析:根据题意,若事件A为“x+y为偶数”发生,则x、y两个数均为奇数或均为偶数.共有2×3×3=18个基本事件,∴事件A的概率为=.而A、B同时发生,基本事件有“2+4”、“2+6”、“4+2”、“4+6”、“6+2”、“6+4”,一共有6个基本事件,因此事件A、B同时发生的概率为=因此,在事件A发生的情况下,B发生的概率为P(B|A)=考点:条件概率与独立事件16、1【解题分析】

首先根据抛物线的性质,可将抛物线上的点到直线和轴的距离和转化为抛物线上的点到直线的距离和到焦点的距离和减1,再根据数形结合求距离和的最小值.【题目详解】设抛物线上的点到直线的距离为,到准线的距离为,到轴的距离为,抛物线上的点到准线的距离和到焦点的距离相等,,,如图所示:的最小值就是焦点到直线的距离,焦点到直线的距离,所以有:的最小值是1,故答案为:1【题目点拨】本题考查抛物线的定义和抛物线的几何性质,意在考查转化与化归,关键是抛物线定义域的转化,属于中档题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)2;(2)【解题分析】

(1)三棱柱的体积,由此能求出结果;(2)连结是直线与平面所成角,由此能求出直线与平面所成角的大小.【题目详解】解:(1)∵直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为1.∴三棱柱ABC﹣A1B1C1的体积:V=S△ABC×AA12.(2)连结AM,∵直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为1,M是BC中点,∴AA1⊥底面ABC,AM,∴∠A1MA是直线A1M与平面ABC所成角,tan∠A1MA,∴直线A1M与平面ABC所成角的大小为arctan.【题目点拨】本题考查三棱柱的体积的求法,考查线面角的大小的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.18、(1);(2)①;②【解题分析】

(1)根据古典概型概率公式计算可得;(2)①用100−30可得;②用购进5箱的平均利润>购进6箱的平均利润,解不等式可得.【题目详解】解:(1)设这6位顾客是A,B,C,D,E,F.其中3点以前购买的顾客是A,B,C,D.3点以后购买的顾客是E,F.从这6为顾客中任选2位有15种选法:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),其中恰好一位是以2000元价格购买的顾客,另一位是以1200元价格购买的顾客的有8种:(A,E),(A,F),(B,E),(B,F),(C,E),(C,F),(D,E),(D,F).根据古典概型的概率公式得;(2)①依题意,∴,所以估计接下来的一个月(30天)内该种玫瑰每天下午3点以前的销售量不少于5箱的天数是天;②批发店毎天在购进4箱数量的玫瑰时所获得的平均利润为:4×2000−4×500×3=2000元;批发店毎天在购进5箱数量的玫瑰时所获得的平均利润为:元;批发店毎天在购进6箱数量的玫瑰时所获得的平均利润为:由,解得:,则所以,要求b的最小值,则求的最大值,令,则,明显,则在上单调递增,则在上单调递增,,则b的最小值为.【题目点拨】本题考查了古典概型及其概率计算公式,属中档题.19、(1)(2)【解题分析】

试题分析:(1)利用两角差的余弦公式及极坐标与直角坐标的互化公式可得直线l的普通方程;利用同角三角函数的基本关系,消去θ可得曲线C的普通方程.(2)由点到直线的距离公式、两角和的正弦公式,及正弦函数的有界性求得点P到直线l的距离的最大值.试题解析:⑴由得,∴由得⑵在上任取一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论