2024届江苏省扬大附中东部分校高二数学第二学期期末学业质量监测试题含解析_第1页
2024届江苏省扬大附中东部分校高二数学第二学期期末学业质量监测试题含解析_第2页
2024届江苏省扬大附中东部分校高二数学第二学期期末学业质量监测试题含解析_第3页
2024届江苏省扬大附中东部分校高二数学第二学期期末学业质量监测试题含解析_第4页
2024届江苏省扬大附中东部分校高二数学第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省扬大附中东部分校高二数学第二学期期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数f(x)对任意的实数x均有f(x+2)+f(x)=0,f(0)=3,则f(2022)等于()A.﹣6 B.﹣3 C.0 D.32.方程所表示的曲线是()A.双曲线的一部分 B.椭圆的一部分 C.圆的一部分 D.直线的一部分3.已知命题椭圆上存在点到直线的距离为1,命题椭圆与双曲线有相同的焦点,则下列命题为真命题的是()A. B. C. D.4.被称为宋元数学四大家的南宋数学家秦九韶在《数书九章》一书中记载了求解三角形面积的公式,如图是利用该公式设计的程序框图,则输出的的值为()A.4 B.5 C.6 D.75.已知复数满足,则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知某函数图象如图所示,则图象所对应的函数可能是()A. B.C. D.7.已知函数,函数有四个不同的零点,从小到大依次为,,,,则的取值范围为()A. B. C. D.8.已知盒中装有大小形状完全相同的3个红球、2个白球、5个黑球.甲每次从中任取一球且不放回,则在他第一次拿到的是红球的前提下,第二次拿到白球的概率为()A. B. C. D.9.已知,则方程的实根个数为,且,则()A. B. C. D.10.下表提供了某厂节能降耗技术改造后在生产产品过程中记录的产量(吨)与相应的生产能耗(吨)的几组对应数据:根据上表提供的数据,求出关于的线性回归方程为,那么表中的值为()A. B. C. D.11.已知,命题“若,则.”的逆命题、否命题、逆否命题中真命题的个数为()A.0 B.1 C.2 D.312.已知集合,,则从到的映射满足,则这样的映射共有()A.3个 B.4个 C.5个 D.6个二、填空题:本题共4小题,每小题5分,共20分。13.已知复数的共轭复数是,且,则的虚部是__________.14.设随机变量,且,则实数的值为_______.15.要对如图所示的四个部分进行着色,要求相邻的两块不能用同一种颜色,现有五种不同的颜色可供选择,则共有_______种不同的着色方法.(用数字作答)①②④③16.过抛物线的焦点作直线与该抛物线交于两点,过其中一交点向准线作垂线,垂足为,若是面积为的等边三角形,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某市政府为了节约生活用电,计划在本市试行居民生活用电定额管理,即确定一户居民月用电量标准a,用电量不超过a的部分按平价收费,超出a的部分按议价收费为此,政府调查了100户居民的月平均用电量单位:度,以,,,,,分组的频率分布直方图如图所示.根据频率分布直方图的数据,求直方图中x的值并估计该市每户居民月平均用电量的值;用频率估计概率,利用的结果,假设该市每户居民月平均用电量X服从正态分布估计该市居民月平均用电量介于度之间的概率;利用的结论,从该市所有居民中随机抽取3户,记月平均用电量介于度之间的户数为,求的分布列及数学期望.18.(12分)袋中有红、黄、白色球各1个,每次任取1个,有放回地抽三次,求基本事件的个数,写出所有基本事件的全集,并计算下列事件的概率:(1)三次颜色各不相同;(2)三次颜色不全相同;(3)三次取出的球无红色或黄色.19.(12分)在中,内角,,所对的边分别为,,.已知,,.(Ⅰ)求的值;(Ⅱ)求的值.20.(12分)某保险公司针对企业职工推出一款意外险产品,每年每人只要交少量保费,发生意外后可一次性获赔50万元.保险公司把职工从事的所有岗位共分为、、三类工种,根据历史数据统计出三类工种的每赔付频率如下表(并以此估计赔付概率).(Ⅰ)根据规定,该产品各工种保单的期望利润都不得超过保费的20%,试分别确定各类工种每张保单保费的上限;(Ⅱ)某企业共有职工20000人,从事三类工种的人数分布比例如图,老板准备为全体职工每人购买一份此种保险,并以(Ⅰ)中计算的各类保险上限购买,试估计保险公司在这宗交易中的期望利润.21.(12分)已知数列满足:,(R,N*).(1)若,求证:;(2)若,求证:.22.(10分)某兴趣小组欲研究某地区昼夜温差大小与患感冒就诊人数之间的关系,他们分别到气象局与某医院抄录了1到5月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:日期1月10日2月10日3月10日4月10日5月10日昼夜温差81013129就诊人数(个)1825282617该兴趣小组确定的研究方案是:先从这5组数据中选取一组,用剩下的4组数据求线性回归方程,再用选取的一组数据进行检验.(1)若选取的是1月的一组数据,请根据2至5月份的数据.求出关于的线性回归方程.(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2,则认为得到的线性回归方程是理想的,试判断该小组所得的线性回归方程是否理想?如果不理想,请说明理由,如果理想,试预测昼夜温差为时,因感冒而就诊的人数约为多少?参考公式:,.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

分析可得,即函数是周期为4的周期函数,据此可得,即可求解,得到答案.【题目详解】根据题意,函数对任意的实数均有,即,则有,即函数是周期为4的周期函数,则,故选B.【题目点拨】本题主要考查了函数的周期的判定及其应用,其中解答中根据题设条件,求得函数的周期是解答的关键,着重考查了推理与运算能力,属于基础题.2、B【解题分析】

方程两边平方后可整理出椭圆的方程,由于的值只能取非负数,推断出方程表示的曲线为一个椭圆的一部分.【题目详解】解:两边平方,可变为,即,表示的曲线为椭圆的一部分;故选:.【题目点拨】本题主要考查了曲线与方程.解题的过程中注意的范围,注意数形结合的思想.3、B【解题分析】对于命题p,椭圆x2+4y2=1与直线l平行的切线方程是:直线,而直线,与直线的距离,所以命题p为假命题,于是¬p为真命题;对于命题q,椭圆2x2+27y2=54与双曲线9x2−16y2=144有相同的焦点(±5,0),故q为真命题,从而(¬p)∧q为真命题。p∧(¬q),(¬p)∧(¬q),p∧q为假命题,本题选择B选项.4、B【解题分析】

模拟程序运行,依次计算可得所求结果【题目详解】当,,时,,;当,,时,,;当,,时,,;当,,时,,;故选B【题目点拨】本题考查程序运算的结果,考查运算能力,需注意所在位置5、A【解题分析】

分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,求出的坐标即可得结论.详解:因为,复数的在复平面内对应的点为,位于第一象限,故选A.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.6、D【解题分析】

对给出的四个选项分别进行分析、讨论后可得结果.【题目详解】对于A,函数,当时,;当时,,所以不满足题意.对于B,当时,单调递增,不满足题意.对于C,当时,,不满足题意.对于D,函数为偶函数,且当时,函数有两个零点,满足题意.故选D.【题目点拨】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.7、B【解题分析】分析:通过f(x)的单调性,画出f(x)的图象和直线y=a,考虑四个交点的情况,得到x1=-2-x2,-1<x2≤0,x3x4=4,再由二次函数的单调性,可得所求范围.详解:当x>0时,f(x)=,可得f(x)在x>2递增,在0<x<2处递减,

由f(x)=e

(x+1)2,x≤0,

x<-1时,f(x)递减;-1<x<0时,f(x)递增,

可得x=-1处取得极小值1,

作出f(x)的图象,以及直线y=a,

可得e

(x1+1)2=e

(x2+1)2=,即有x1+1+x2+1=0,可得x1=-2-x2,-1<x2≤0,可得x3x4=4,

x1x2+x3x4=4-2x2-x22=-(x2+1)2+5,在-1<x2≤0递减,

可得所求范围为[4,5).故选B.点睛:本题考查函数方程的转化思想,以及数形结合思想方法,考查二次函数的最值求法,化简整理的运算能力,属于中档题.8、D【解题分析】

设“第一次拿到的是红球”为事件A,“第二次拿到白球”为事件B,分别计算出,的值,由条件概率公式可得,可得答案.【题目详解】解:设“第一次拿到的是红球”为事件A,“第二次拿到白球”为事件B,可得:,,则所求事件的概率为:,故选:D.【题目点拨】本题主要考查条件概率与独立事件的计算,属于条件概率的计算公式是解题的关键.9、A【解题分析】

由与的图象交点个数可确定;利用二项式定理可分别求得和的展开式中项的系数,加和得到结果.【题目详解】当时,与的图象如下图所示:可知与有且仅有个交点,即的根的个数为的展开式通项为:当,即时,展开式的项为:又本题正确选项:【题目点拨】本题考查利用二项式定理求解指定项的系数的问题,涉及到函数交点个数的求解;解题关键是能够将二项式配凑为展开项的形式,从而分别求解对应的系数,考查学生对于二项式定理的综合应用能力.10、A【解题分析】

先求出这组数据的样本中心点,样本中心点是用含有t的代数式表示的,把样本中心点代入变形的线性回归方程,得到关于t的一次方程,解方程,得到结果.【题目详解】∵由回归方程知=,解得t=3,故选A.【题目点拨】】本题考查回归分析的初步应用,考查样本中心点的性质,考查方程思想的应用,是一个基础题,解题时注意数字计算不要出错.11、C【解题分析】

先写出原命题的逆命题,否命题,再判断真假即可,这里注意的取值,在判断逆否命题的真假时,根据原命题和它的逆否命题具有相同的真假性判断原命题的真假即可.【题目详解】解:逆命题:设,若,则a>b,由可得,能得到a>b,所以该命题为真命题;否命题设,若a≤b,则,由及a≤b可以得到,所以该命题为真命是题;因为原命题和它的逆否命题具有相同的真假性,所以只需判断原命题的真假即可,当时,,所以由a>b得到,所以原命题为假命题,即它的逆否命题为假命题;故为真命题的有2个.故选C.【题目点拨】本题主要考查四种命题真假性的判断问题,由题意写出原命题的逆命题,否命题并判断命题的真假是解题的关键.12、B【解题分析】分析:根据映射的定义,结合已知中f(3)=3,可得f(1)和f(2)的值均有两种不同情况,进而根据分步乘法原理得到答案详解::若f(3)=3,则f(1)=3或f(1)=4;f(2)=3或f(2)=4;故这样的映射的个数是2×2=4个,故选:B.点睛:本题考查的知识点是映射的定义,分步乘法原理,考查了逻辑推理能力,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

设复数,代入等式得到答案.【题目详解】设复数故答案为【题目点拨】本题考查了复数的化简,共轭复数,复数的模,意在考查学生的计算能力和对复数知识的灵活运用.14、【解题分析】

随机变量的正态曲线关于对称,即0与关于对称,解出即可。【题目详解】根据题意有故填9【题目点拨】本题考查正态曲线的特点及曲线所表示的几何意义,属于基础题。15、180【解题分析】分析:需要先给①着色,有5种结果,再给②着色,有4种结果,再给③着色有3种结果,最后给④着色,有3种结果,相乘得到结果.详解:需要先给①着色,有5种结果,再给②着色,有4种结果,再给③着色有3种结果,最后给④着色,有3种结果,则共有种不同的着色方法..即答案为180.点睛:本题考查分步计数原理,这种问题解题的关键是看清题目中出现的结果,几个环节所包含的事件数在计算时要做到不重不漏.16、2.【解题分析】分析:根据是面积为的等边三角形,算出边长,及∠,得出p与边长的关系详解:是面积为的等边三角形即∠即p=2点晴:本题主要考察抛物线的定义及性质,在抛物线类的题目中,做题的过程中要抓住抛物线上一点到焦点的距离和到准线的距离相等的条件是做题的关键三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)225.6.(2)(i);(ii)分布列见解析;.【解题分析】分析:(1)由矩形面积和为列方程可得,利用每个矩形的中点横坐标与该矩形的纵坐标相乘后求和,即可得到该市每户居民平均用电量的值;(2)(i)由正态分布的对称性可得结果;(ii)因为,则,,从而可得分布列,利用二项分布的期望公式可得结果.详解:(1)由得(2)(i)(ii)因为,∴,.所以的分布列为0123所以点睛:“求期望”,一般利用离散型随机变量的数学期望的定义求期望.对于某些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布),则此随机变量的期望可直接利用这种典型分布的期望公式()求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.18、(1);(2);(3);【解题分析】

按球颜色写出所有基本事件;(1)计数三次颜色各不相同的事件数,计算概率;(2)计数三次颜色全相同的事件数,从对立事件角度计算概率;(3)计数三次取出的球无红色或黄色事件数,计算概率;【题目详解】按抽取的顺序,基本事件全集为:{(红红红),(红红黄),(红红蓝),(红黄红),(红黄黄),(红黄蓝),(红蓝红),(红蓝黄),(红蓝蓝),(黄红红),(黄红黄),(黄红蓝),(黄黄红),(黄黄黄),(黄黄蓝),(黄蓝红),(黄蓝黄),(黄蓝蓝),(蓝红红),(蓝红黄),(蓝红蓝),(蓝黄红),(蓝黄黄),(蓝黄蓝),(蓝蓝红),(蓝蓝黄),(蓝蓝蓝)},共27个.(1)三次颜色各不相同的事件有(红黄蓝),(红蓝黄),(黄红蓝),(黄蓝红),(蓝红黄),(蓝黄红),共6个,概率为;(2)其中颜色全相同的有3个,因此所求概率为;(3)三次取出的球红黄都有的事件有12个,因此三次取出的球无红色或黄色事件有15个,概率为.无红色或黄色事件【题目点拨】本题考查古典概型概率,解题关键是写出所有基本事件的集合,然后按照要求计数即可,当然有时也可从对立事件的角度考虑.19、(Ⅰ);(Ⅱ)【解题分析】

(Ⅰ)由于,计算出再通过正弦定理即得答案;(Ⅱ)可先求出,然后利用和差公式即可求得答案.【题目详解】(Ⅰ)解:,且,∴,又,∴,由正弦定理,得,∴的值为.(Ⅱ)由题意可知,,∴,.【题目点拨】本题主要考查三角恒等变换,正弦定理的综合应用,意在考查学生的分析能力,计算能力,难度不大.20、(Ⅰ)见解析;(Ⅱ)元.【解题分析】试题分析:(I)设工种每份保单的保费,则需赔付时,收入为,根据概率分布可计算出保费的期望值为,令解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论