版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市朝阳区北京八十中学2024届数学高二第二学期期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.以下四个命题中,真命题的是()A.B.“对任意的”的否定是“存在”C.,函数都不是偶函数D.中,“”是“”的充要条件2.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.复数(为虚数单位),则的共轭复数的虚部是()A. B. C. D.4.设函数在区间上有两个极值点,则的取值范围是A. B. C. D.5.某校为了解本校高三学生学习的心理状态,采用系统抽样方法从人中抽取人参加某种测试,为此将他们随机编号为,分组后在第一组采用简单随机抽样的方法抽到的号码为,抽到的人中,编号落在区间的人做试卷,编号落在的人做试卷,其余的人做试卷,则做试卷的人数为()A. B. C. D.6.已知,则的最小值是A. B. C. D.7.设曲线在点处的切线与直线平行,则()A.B.C.D.8.已知平面α与平面β相交,直线m⊥α,则()A.β内必存在直线与m平行,且存在直线与m垂直B.β内不一定存在直线与m平行,不一定存在直线与m垂直C.β内必存在直线与m平行,不一定存在直线与m垂直D.β内不一定存在直线与m平行,但必存在直线与m垂直9.已知定义在R上的函数f(x)的导函数为f'(x),若f(x)+fA.(-∞,0) B.(0,+∞) C.(-∞,1) D.(1,+∞)10.若函数在区间上的图象如图所示,则的值()A. B.C. D.11.已知,(),则数列的通项公式是()A. B. C. D.12.正六边形的边长为,以顶点为起点,其他顶点为终点的向量分别为;以顶点为起点,其他顶点为终点的向量分别为.若分别为的最小值、最大值,其中,则下列对的描述正确的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.己知幂函数在上单调递减,则______.14.函数的定义域是__________.15.若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的体积为.16.己知是等差数列{}的前项和,,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行评分,评分的频数分布表如下:女性用户分值区间[50,60)[60,70)[70,80)[80,90)[90,100]频数2040805010男性用户分值区间[50,60)[60,70)[70,80)[80,90)[90,100]频数4575906030(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(2)把评分不低于70分的用户称为“评分良好用户”,完成下列列联表,并判断能否有的把握认为“评分良好用户”与性别有关?女性用户男性用户合计“认可”手机“不认可”手机合计参考附表:参考公式,其中18.(12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(I)求接受甲种心理暗示的志愿者中包含A1但不包含的频率。(II)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.19.(12分)已知函数.(1)求此函数的单调区间;(2)设.是否存在直线()与函数的图象相切?若存在,请求出的值,若不存在,请说明理由.20.(12分)羽毛球比赛中采用每球得分制,即每回合中胜方得1分,负方得0分,每回合由上回合的胜方发球.设在甲、乙的比赛中,每回合发球,发球方得1分的概率为0.6,各回合发球的胜负结果相互独立.若在一局比赛中,甲先发球.(1)求比赛进行3个回合后,甲与乙的比分为的概率;(2)表示3个回合后乙的得分,求的分布列与数学期望.21.(12分)设函数.(1)讨论的单调性;(2)若存在两个极值点,且,,证明:.22.(10分)选修4-4:坐标系与参数方程已知直线:(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系.圆的极坐标方程为.(Ⅰ)求圆心的极坐标;(Ⅱ)设点的直角坐标为,直线与圆的交点为,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
解:A.若sinx=tanx,则sinx=tanx,∵x∈(0,π),∴sinx≠0,则1,即cosx=1,∵x∈(0,π),∴cosx=1不成立,故∃x∈(0,π),使sinx=tanx错误,故A错误,B.“对任意的x∈R,x2+x+1>0”的否定是“存在x0∈R,x02+x0+1≤0”,故B错误,C.当θ时,f(x)=sin(2x+θ)=sin(2x)=cos2x为偶函数,故C错误,D.在△ABC中,C,则A+B,则由sinA+sinB=sin(B)+sin(A)=cosB+cosA,则必要性成立;∵sinA+sinB=cosA+cosB,∴sinA﹣cosA=cosB﹣sinB,两边平方得sin2A﹣2sinAcosA+cos2A=sin2B﹣2sinBcosB+cos2B,∴1﹣2sinAcosA=1﹣2sinBcosB,∴sin2A=sin2B,则2A=2B或2A=π﹣2B,即A=B或A+B,当A=B时,sinA+sinB=cosA+cosB等价为2sinA=2cosA,∴tanA=1,即A=B,此时C,综上恒有C,即充分性成立,综上△ABC中,“sinA+sinB=cosA+cosB”是“C”的充要条件,故D正确,故选D.考点:全称命题的否定,充要条件等2、B【解题分析】
根据充分性和必要性的判断方法来判断即可.【题目详解】当时,若,不能推出,不满足充分性;当,则,有,满足必要性;所以“”是“”的必要不充分条件.故选:B.【题目点拨】本题考查充分性和必要性的判断,是基础题.3、C【解题分析】分析:求出复数,得到,即可得到答案.详解:故的共轭复数的虚部是3.故选C.点睛:本题考查复数的乘法运算,复数的共轭复数等,属基础题.4、D【解题分析】令,则在上有两个不等实根,有解,故,点晴:本题主要考查函数的单调性与极值问题,要注意转化,函数()在区间上有两个极值点,则在上有两个不等实根,所以有解,故,只需要满足解答此类问题,应该首先确定函数的定义域,注意分类讨论和数形结合思想的应用5、B【解题分析】,由题意可得抽到的号码构成以为首项,以为公差的等差数列,且此等差数列的通项公式为,落入区间的人做问卷,由,即,解得,再由为正整数可得,做问卷的人数为,故选B.6、B【解题分析】
将代数式与代数式相乘,展开后利用基本不等式求出代数式的最小值,然后在不等式两边同时除以可得出答案.【题目详解】因为,又,所以,当且仅当时取,故选B.【题目点拨】本题考查利用基本不等式求代数式的最值,在利用基本不等式求最值时,要注意配凑“定值”的条件,注意“一正、二定、三相等”基本思想的应用.7、D【解题分析】试题分析:由的导数为,则在点处的切线斜率为,由切线与直线平行,所以,故选D.考点:利用导数研究曲线在某点处的切线方程.8、D【解题分析】
可在正方体中选择两个相交平面,再选择由顶点构成且与其中一个面垂直的直线,通过变化直线的位置可得正确的选项.【题目详解】
如图,平面平面,平面,但平面内无直线与平行,故A错.又设平面平面,则,因,故,故B、C错,综上,选D.【题目点拨】本题考察线、面的位置关系,此种类型问题是易错题,可选择合适的几何体去构造符合条件的点、线、面的位置关系或不符合条件的反例.9、B【解题分析】
不等式的exfx<1的解集等价于函数g(x)=exf(x)图像在y=1下方的部分对应的x的取值集合,那就需要对函数g(x)=exf(x)的性质进行研究,将fx+f'x【题目详解】解:令g(x)=因为f所以,(故g故gx在R又因为f所以,g所以当x>0,gx<1,即e故选B.【题目点拨】不等式问题往往可以转化为函数图像问题求解,函数图像问题有时借助函数的性质(奇偶性、单调性等)进行研究,有时还需要构造新的函数.10、A【解题分析】
根据周期求,根据最值点坐标求【题目详解】因为,因为时,所以因为,所以,选A.【题目点拨】本题考查由图像求三角函数解析式,考查基本分析求解能力,属基础题.11、C【解题分析】由,得:,∴为常数列,即,故故选C12、A【解题分析】
利用向量的数量积公式,可知只有,其余数量积均小于等于0,从而得到结论.【题目详解】由题意,以顶点A为起点,其他顶点为终点的向量分别为,以顶点D为起点,其他顶点为终点的向量分别为,则利用向量的数量积公式,可知只有,其余数量积均小于等于0,又因为分别为的最小值、最大值,所以,故选A.【题目点拨】本题主要考查了向量的数量积运算,其中解答中熟记向量的数量积的运算公式,分析出向量数量积的正负是关键,着重考查了分析解决问题的能力,属于中档试题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】
先由幂函数的定义,得到,求出,再由题意,根据幂函数的单调性,即可得出结果.【题目详解】因为为幂函数,所以或,又在上单调递减,由幂函数的性质,可得:,解得:,所以.故答案为:.【题目点拨】本题主要考查由幂函数单调性求参数,熟记幂函数的定义,以及幂函数的单调性即可,属于常考题型.14、【解题分析】分析:根据分母不为零得定义域.详解:因为,所以,即定义域为.点睛:求具体函数定义域,主要从以下方面列条件:偶次根式下被开方数非负,分母不为零,对数真数大于零,实际意义等.15、【解题分析】
由面积为的半圆面,可得圆的半径为2,即圆锥的母线长为2.圆锥的底面周长为.所以底面半径为1.即可得到圆锥的高为.所以该圆锥的体积为.16、7【解题分析】
根据题目是等差数列{}的前项和,,利用等差数列的通项公式和前项和公式,建立两个含有、的方程并求解,再利用等差数列的通项公式即可求解出的值。【题目详解】由题意得,解得,所以,,故答案为7。【题目点拨】本题主要考查了等差数列的基本运算,在等差数列中,五个基本量“知三求二”,基本量中公差是联系数列中各项的关键,是解题的关键。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)直方图见解析;女性用户的波动小,男性用户的波动大.(2)有的把握.【解题分析】
(1)利用频数分布表中所给数据求出各组的频率,利用频率除以组距得到纵坐标,从而可得频率分布直方图,由直方图观察女性用户和男性用户评分的集中与分散情况,即可比较波动大小;(2)利用公式求出,与临界值比较,即可得出结论.【题目详解】(1)女性用户和男性用户的频率分布直方图分别如下左、右图:由图可得女性用户的波动小,男性用户的波动大.(2)2×2列联表如下图:女性用户男性用户合计“认可”手机140180320“不认可”手机60120180合计200300500≈5.208>2.706,所以有的把握认为性别和对手机的“认可”有关.【题目点拨】本题考查频率分布直方图的作法及应用,考查独立性检验的应用,是中档题.高考试题对独立性检验的思想进行考查时,一般给出的计算公式,不要求记忆,近几年高考中较少单独考查独立性检验,多与统计知识、概率知识综合考查,频率分布表与独立性检验融合在一起是一种常见的考查形式,一般需要根据条件列出2×2列联表,计算的观测值,从而解决问题.18、(1)(2)见解析【解题分析】(I)记接受甲种心理暗示的志愿者中包含但不包含的事件为M,计算即得(II)由题意知X可取的值为:.利用超几何分布概率计算公式得X的分布列为X01234P进一步计算X的数学期望.试题解析:(I)记接受甲种心理暗示的志愿者中包含但不包含的事件为M,则(II)由题意知X可取的值为:.则因此X的分布列为X01234PX的数学期望是=【名师点睛】本题主要考查古典概型的概率公式和超几何分布概率计算公式、随机变量的分布列和数学期望.解答本题,首先要准确确定所研究对象的基本事件空间、基本事件个数,利用超几何分布的概率公式.本题属中等难度的题目,计算量不是很大,能很好的考查考生数学应用意识、基本运算求解能力等.19、(1)单调递增区间是,单调递减区间是和(2)存在,的值是.【解题分析】
(1)求导数,利用导数的正负,即可求此函数的单调区间;(2)假设存直线与函数的图象相切于点,则这条直线可以写成,与直线比较,即可得出结论.【题目详解】解:(1)∵,∴.令,得,解之,得;令,得,解之,得,或.∴函数的单调递增区间是,单调递减区间是和.(2)∵,,∴.∴.假设存直线与函数的图象相切于点(),则这条直线可以写成.∵,,∴.即.∴解之,得所以存在直线与函数的图象相切,的值是.【题目点拨】本题考查导数知识的综合运用,考查函数的单调性,考查导数的几何意义,考查学生分析解决问题的能力,属于中档题.20、(1)0.1(2)见解析【解题分析】
(1)记“第回合发球,甲胜”为事件,=1,2,2,且事件相互独立,设“2个回合后,甲与乙比分为2比1”为事件,由互斥事件概率加法公式和相互独立事件乘法公式求出比赛进行2个回合后,甲与乙的比分为2比1的概率;(2)的可能取值为0,1,2,2,分别求出相应的概率,由此求出的分布列和数学期望.【题目详解】解:记“第回合发球,甲胜”为事件,=1,2,2,且事件相互独立.(1)记“2个回合后,甲与乙比分为2比1”为事件,则事件发生表示事件或或发生,且,,互斥.又,,.由互斥事件概率加法公式可得.答:2个回合后,甲与乙比分为2比1的概率为0.1.(2)因表示2个回合后乙的得分,则0,1,2,2.,,..所以,随机变量的概率分布列为01220.2160.10.2040.14
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广州卫生职业技术学院《食用菌栽培技术》2023-2024学年第一学期期末试卷
- 2025湖南省安全员-C证考试题库
- 2025山东省安全员B证考试题库附答案
- 2025年湖北省建筑安全员知识题库
- 【语文课件】《我的信念》课件
- 《壶口瀑布》课件
- 单位管理制度展示选集【人员管理篇】
- 单位管理制度展示合集【职员管理】十篇
- 电力天然气周报:多省2025年长协电价落地11月我国天然气表观消费量同比下降0.3
- 2024年上海市县乡教师选调考试《教育学》真题汇编带解析含完整答案(各地真题)
- 管材管件采购方案投标方案(完整技术标)
- 炼油化工建设项目建设规模产品方案及总工艺流程
- 教师培训《从教走向学-在课堂上落实核心素养》读书分享读书感悟读后感教学课件
- 变配电所基础知识课件
- 公开课教我如何不想他课件-PPT
- 读书笔记《框架思维》PPT模板思维导图下载
- GB/T 42437-2023南红鉴定
- 购房屋贷款合同协议书
- 培智生活数学暑假作业
- 项目部领导施工现场值班带班交接班记录表
- 2023年江苏小高考历史试卷
评论
0/150
提交评论