版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省金华市云富高级中学数学高二第二学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数是奇函数,则使得成立的的取值范围是()A. B.C. D.2.某快递公司共有人,从周一到周日的七天中,每天安排一人送货,每人至少送货天,其不同的排法共有()种.A. B. C. D.3.若的二项展开式各项系数和为,为虚数单位,则复数的运算结果为()A. B. C. D.4.给出下列四个说法:①命题“都有”的否定是“使得”;②已知,命题“若,则”的逆命题是真命题;③是的必要不充分条件;④若为函数的零点,则,其中正确的个数为()A. B. C. D.5.某研究型学习小组调查研究学生使用智能手机对学习的影响.部分统计数据如下表:使用智能手机不使用智能手机合计学习成绩优秀4812学习成绩不优秀16218合计201030附表:经计算,则下列选项正确的是A.有的把握认为使用智能手机对学习有影响B.有的把握认为使用智能手机对学习无影响C.有的把握认为使用智能手机对学习有影响D.有的把握认为使用智能手机对学习无影响6.已知,是平面内两个互相垂直的单位向量,若向量满足,则的最大值是()A.1 B.2 C. D.7.设集合,那么集合中满足条件的元素个数为()A.60 B.90 C.120 D.1308.已知,则的值()A.都大于1 B.都小于1C.至多有一个不小于1 D.至少有一个不小于19.如图,点为正方体的中心,点为棱的中点,点为棱的中点,则空间四边形在该正方体的面上的正投影不可能是()A. B. C. D.10.已知随机变量满足P(=1)=pi,P(=0)=1—pi,i=1,2.若0<p1<p2<,则A.<,< B.<,>C.>,< D.>,>11.已知命题,命题,若为假命题,则实数的取值范围是()A. B.或 C. D.12.已知函数f(x)=13x3-12A.(0,1) B.(3,+∞) C.(0,2) D.(1,+∞)二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的定义域为,部分对应值如下表,又知的导函数的图象如下图所示:-10451221则下列关于的命题:①为函数的一个极大值点;②函数的极小值点为2;③函数在上是减函数;④如果当时,的最大值是2,那么的最大值为4;⑤当时,函数有4个零点.其中正确命题的序号是__________.14.已知函数fx=lnx+1x,x>0,-15.端午节小长假期间,张洋与几位同学从天津乘到大连去旅游,若当天从天津到大连的三列火车正点到达的概率分别为,,,假设这三列火车之间是否正点到达互不影响,则这三列火车恰好有两列正点到达的概率是____.16.已知函数,则=______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在一次考试中某班级50名学生的成绩统计如表,规定75分以下为一般,大于等于75分小于85分为良好,85分及以上为优秀.经计算样本的平均值,标准差.为评判该份试卷质量的好坏,从其中任取一人,记其成绩为,并根据以下不等式进行评判①;②;③评判规则:若同时满足上述三个不等式,则被评为优秀试卷;若仅满足其中两个不等式,则被评为合格试卷;其他情况,则被评为不合格试卷.(1)试判断该份试卷被评为哪种等级;(2)按分层抽样的方式从3个层次的学生中抽出10名学生,再从抽出的10名学生中随机抽出4人进行学习方法交流,用随机变量表示4人中成绩优秀的人数,求随机变量的分布列和数学期望.18.(12分)2020年开始,国家逐步推行全新的高考制度,新高考不再分文理科。某省采用模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某学校从高一年级1000名学生(其中男生550人,女生450人)中,根据性别分层,采用分层抽样的方法从中抽取100名学生进行调查.(1)学校计划在高一上学期开设选修中的“物理”和“历史”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的100名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如下表是根据调查结果得到的列联表.请求出和,并判断是否有的把握认为选择科目与性别有关?说明你的理由;选择“物理”选择“历史”总计男生10女生25总计(2)在抽取到的女生中按(1)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中随机抽取4人,设这4人中选择“历史”的人数为,求的分布列及数学期望.参考公式:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82819.(12分)已知定义在上的偶函数满足:当时,.(1)求函数的解析式;(2)设函数,若对于任意的,都有成立,求实数的取值范围.20.(12分)已知函数,.(1)当时,求函数图象在点处的切线方程;(2)当时,讨论函数的单调性;(3)是否存在实数,对任意,且有恒成立?若存在,求出的取值范围;若不存在,说明理由.21.(12分)对一批产品的内径进行抽查,已知被抽查的产品的数量为200,所得内径大小统计如表所示:(Ⅰ)以频率估计概率,若从所有的这批产品中随机抽取3个,记内径在的产品个数为X,X的分布列及数学期望;(Ⅱ)已知被抽查的产品是由甲、乙两类机器生产,根据如下表所示的相关统计数据,是否有的把握认为生产产品的机器种类与产品的内径大小具有相关性.参考公式:,(其中为样本容量).0.0500.0100.001k3.8416.63510.82822.(10分)为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了年下半年该市名农民工(其中技术工、非技术工各名)的月工资,得到这名农民工月工资的中位数为百元(假设这名农民工的月工资均在(百元)内)且月工资收入在(百元)内的人数为,并根据调查结果画出如图所示的频率分布直方图:(Ⅰ)求,的值;(Ⅱ)已知这名农民工中月工资高于平均数的技术工有名,非技术工有名,则能否在犯错误的概率不超过的前提下认为是不是技术工与月工资是否高于平均数有关系?参考公式及数据:,其中.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】的定义域为,它应该关于原点对称,所以,又时,,,为奇函数.又原不等式可以化为,所以,所以,选C.点睛:如果一个函数为奇函数或偶函数,那么它的定义域必须关于原点对称,我们可以利用这个性质去求奇函数或偶函数中的参数的值.2、C【解题分析】分析:把天分成天组,然后人各选一组值班即可.详解:天分成天,天,天组,人各选一组值班,共有种,故选C.点睛:本题主要考查分组与分配问题问题,着重考查分步乘法计数原理,意在考查综合运用所学知识解决实际问题的能力,属于中档题.3、C【解题分析】
分析:利用赋值法求得,再按复数的乘方法则计算.详解:令,得,,∴.故选C.点睛:在二项式的展开式中,求系数和问题,一般用赋值法,如各项系数为,二项式系数和为,两者不能混淆.4、C【解题分析】
对于①②③④分别依次判断真假可得答案.【题目详解】对于①,命题“都有”的否定是“使得”,故①错误;对于②,命题“若,则”的逆命题为“若,则”正确;对于③,若则,若则或,因此是的充分不必要条件,故③错误;对于④,若为函数,则,即,可令,则,故为增函数,令,显然为减函数,所以方程至多一解,又因为时,所以,则④正确,故选C.【题目点拨】本题主要考查真假命题的判断,难度中等.5、A【解题分析】
根据附表可得,所以有的把握认为使用智能手机对学习有影响,选A6、C【解题分析】
试题分析:由于垂直,不妨设,,,则,,表示到原点的距离,表示圆心,为半径的圆,因此的最大值,故答案为C.考点:平面向量数量积的运算.7、D【解题分析】
从,且入手,可能取,分3种情况讨论种的个数,再求5个元素的排列个数,相加即可得到答案.【题目详解】因为,且,所以可能取,当时,中有1个1或,4四个所以元素个数为;当时,中有2个1,3个0,或1个1,1个,3个0,或2个,3个0,所以元素个数为,当时,中有3个1,2个0,或2个1,1个,2个0,或2个,1个1,2个0,或3个,2个0,元素个数为,故满足条件的元素个数为,故选:D【题目点拨】本题考查了分类讨论思想,考查了求排列数,对的值和对中的个数进行分类讨论是解题关键,属于难题.8、D【解题分析】
先假设,这样可以排除A,B.再令,排除C.用反证法证明选项D是正确的.【题目详解】解:令,则,排除A,B.令,则,排除C.对于D,假设,则,相加得,矛盾,故选D.【题目点拨】本题考查了反证法的应用,应用特例排除法是解题的关键.9、C【解题分析】分析:根据空间四边形在正方体前后面、上下面和左右面上的正投影,即可得到正确的选项.详解:空间四边形在正方体前后面上的正投影是A选项;空间四边形在正方体前上下上的正投影是B选项;空间四边形在正方体左右面上的正投影是D选项,故选C.点睛:本题主要考查了平行投影和平行投影的作法的应用问题,主要同一图形在不同面上的投影不一定相同,属于基础题,着重考查了空间推理能力.10、A【解题分析】∵,∴,∵,∴,故选A.【名师点睛】求离散型随机变量的分布列,首先要根据具体情况确定的取值情况,然后利用排列,组合与概率知识求出取各个值时的概率.对于服从某些特殊分布的随机变量,其分布列可以直接应用公式给出,其中超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.由已知本题随机变量服从两点分布,由两点分布数学期望与方差的公式可得A正确.11、D【解题分析】试题分析:由,可得,由,可得,解得.因为为假命题,所以与都是假命题,若是假命题,则有,若是假命题,则由或,所以符合条件的实数的取值范围为,故选D.考点:命题真假的判定及应用.12、B【解题分析】
由三次函数的性质,求出导函数,确定函数的极值,最后由极大值大于0,极小值小于0可得a的范围.【题目详解】f'(x)=x易知x<-a或x>1时f'(x)>0,当-a<x<1时,f'(x)<0,∴f(x)极大值=f(-a)=∴16a3故选B.【题目点拨】本题考查函数的零点,考查用导数研究函数的极值.求极值时要注意在极值点的两侧,f'(x)的符号要相反.二、填空题:本题共4小题,每小题5分,共20分。13、②③【解题分析】分析:由题意结合导函数与原函数的关系逐一考查所给的命题即可求得结果.详解:由导数图象可知,当﹣1<x<0或2<x<4时,f′(x)>0,函数单调递增,当0<x<2或4<x<5,f′(x)<0,函数单调递减,当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2),所以①错误;②③正确;因为在当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,要使当x∈[﹣1,t]函数f(x)的最大值是2,则2≤t≤5,所以t的最大值为5,所以④不正确;由f(x)=a知,因为极小值f(2)未知,所以无法判断函数y=f(x)﹣a有几个零点,所以⑤不正确.故答案为:②.点睛:本题考查了导函数与原函数的关系,函数的单调性,函数的极值与最值及零点个数问题,重点考查学生对基础概念的理解和计算能力,属于中档题.14、0,【解题分析】
函数gx=fx-mx有三个零点⇔方程gx=0有3个根⇔方程f(x)x=m有3个根⇔函数【题目详解】∵函数gx=fx-mx有三个零点⇔函数∵y=(1)当x>0时,y'∴∴函数y=f(x)x在(0,e(2)当x<0时,y=-x-2,∴函数y=f(x)∴0<m<e【题目点拨】本题考查利用函数的零点,求参数m的取值范围,考查利用数形结合思想、函数与方程思想解决问题的能力.15、【解题分析】设当天从天津到大连的三列火车正点到达的事件分别为A,B,C,则,事件A,B,C相互独立,∴这三列火车恰好有两列正点到达的概率:,故答案为:0.398.16、【解题分析】
先求内层函数值,再求外层函数值.【题目详解】根据题意,函数,则,则;故答案为.【题目点拨】本题主要考查分段函数求值问题,分段函数的求值问题主要是利用“对号入座”策略.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)该份试卷应被评为合格试卷;(2)见解析【解题分析】
(1)根据频数分布表,计算,,的值,由此判断出“该份试卷应被评为合格试卷”.(2)利用超几何分布分布列计算公式,计算出分布列,并求得数学期望.【题目详解】(1),,,因为考生成绩满足两个不等式,所以该份试卷应被评为合格试卷.(2)50人中成绩一般、良好及优秀的比例为,所以所抽出的10人中,成绩优秀的有3人,所以的取值可能为0,1,2,3;;;.所以随机变的分布列为0123故.【题目点拨】本小题主要考查正态分布的概念,考查频率的计算,考查超几何分布的分布列以及数学期望的计算,属于中档题.18、(1),,有的把握认为选择科目与性别有关.详见解析(2)见解析【解题分析】
(1)完善列联表,计算,再与临界值表进行比较得到答案.(2)这4名女生中选择历史的人数可为0,1,2,3,4.分别计算对应概率,得到分布列,再计算数学期望.【题目详解】(1)由题意,男生人数为,女生人数为,所以列联表为:选择“物理”选择“历史”总计男生451055女生252045总计7030100,.假设:选择科目与性别无关,所以的观测值,查表可得:,所以有的把握认为选择科目与性别有关.(2)从45名女生中分层抽样抽9名女生,所以这9名女生中有5人选择物理,4人选择历史,9名女生中再选择4名女生,则这4名女生中选择历史的人数可为0,1,2,3,4.设事件发生概率为,则,,,,.所以的分布列为:01234所以的数学期望.【题目点拨】本题考查了独立性检验,分布列,数学期望,意在考查学生的计算能力和应用能力.19、(1);(2).【解题分析】
试题分析:(1)当时,,从而,再根据函数为偶函数可得在上的解析式,进而可得在上的解析式.(2)将问题转化为处理.由于为偶函数,故只可求出当时的最小值即可,可得.又,由,得,即为所求.试题解析:(1)设,则,∴,∵定义在偶函数,∴∴.(2)由题意得“对任意,都有成立”等价于“”.又因为是定义在上的偶函数.所以在区间和区间上的值域相同.当时,.设,则令,则当时,函数取得最小值,所以.又由,解得,因此实数的取值范围为.点睛:(1)利用偶函数的性质可求函数的解析式,对于偶函数的值域根据其对称性只需求在y轴一侧的值域即可,体现了转化的思想在解题中的应用.(2)本题中,将“对任意,都有成立”转化为“”来处理,是数学中常用的解题方法,这一点要好好体会和运用.(3)形如的函数的值域问题,可根据换元法转化为二次函数的值域问题求解.20、(1);(2)①当,在上单调递增;②当,时,在,上单调递增,在上单调递减;③当时,在,上单调递增,在上单调递减;(3).【解题分析】
分析:(1)求出函数在的导数即可得切线方程;(2),就分类讨论即可;(3)不妨设,则原不等式可以化为,故利用为增函数可得的取值范围.详解:(1)当时,,,所以所求的切线方程为,即.(2),①当,即时,,在上单调递增.②当,即时,因为或时,;当时,,在和上单调递增,在上单调递减;③当,即时,因为或时,;当时,,在,上单调递增,在上单调递减.(3)假设存在这样的实数,满足条件,不妨设,由知,令,则函数在上单调递增.所以,即在上恒成立,所以,故存在这样的实,满足题意,其取值范围为.点睛:(1)对于曲线的切线问题,注意“在某点处的切线”和“过某点的切线”的差别,切线问题的核心是切点的横坐标;(2)一般
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中班语言活动古诗教案《江雪》
- 2021-2022学年二年级下学期数学数学广角-《推理》(教案)
- 2024年原材料供应与加工合同
- 大班主题活动教案:线的大集合
- 学校家长会管理制度
- 二年级下册数学教案- 6 有余数的除法 -人教新课标
- 大班主题教案《玩水》
- 副主任医师在科研项目中的总结
- 2024年公寓购买协议
- 2024年二手集装箱买卖协议
- 车辆租赁合同纠纷民事起诉状
- GB 29743.1-2022机动车冷却液第1部分:燃油汽车发动机冷却液
- 辩论赛-结果比过程更重要
- (完整版)新概念英语青少版2B期末测试卷
- 隧道高空作业安全要求
- 小学道德与法治人教六上册我们的国家机构我们是场外代表
- 医院水电后勤保障操作规范
- 国家开放大学2022年秋季《建筑测量》形成性考核及实验报告
- 物资放行管理办法放行审批权限规定放行条填写规范
- 第五版-FMEA-新版FMEA【第五版】
- 新能源无人机技术研究报告
评论
0/150
提交评论