版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省惠州市惠东中学高二数学第二学期期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.变量与的回归模型中,它们对应的相关系数的值如下,其中拟合效果最好的模型是()模型12340.480.150.960.30A.模型1 B.模型2 C.模型3 D.模型42.设实数a,b,c满足a+b+c=1,则a,b,c中至少有一个数不小于()A.0 B. C. D.13.已知复数,若为纯虚数,则()A.1 B. C.2 D.44.某单位从6男4女共10名员工中,选出3男2女共5名员工,安排在周一到周五的5个夜晚值班,每名员工值一个夜班且不重复值班,其中女员工甲不能安排在星期一、星期二值班,男员工乙不能安排在星期二值班,其中男员工丙必须被选且必须安排在星期五值班,则这个单位安排夜晚值班的方案共有()A.960种 B.984种 C.1080种 D.1440种5.已知集合,,,则()A. B. C. D.6.通过随机询问111名性别不同的中学生是否爱好运动,得到如下的列联表:男女总计爱好412131不爱好212151总计3151111由得,1.1511.1111.1112.8413.32511.828参照附表,得到的正确结论是()A.在犯错误的概率不超过1.111的前提下,认为“爱好运动与性别有关”B.在犯错误的概率不超过1.11的前提下,认为“爱好运动与性别有关”C.在犯错误的概率不超过1.111的前提下,认为“爱好运动与性别无关”D.有以上的把握认为“爱好运动与性别无关”7.如图,长方形的四个顶点为,,,,曲线经过点.现将一质点随机投入长方形中,则质点落在图中阴影区域外的概率是()A. B. C. D.8.若复数z满足,则在复平面内,z对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知集合A=A.x0<x≤3 B.x0≤x≤3 C.x10.设函数,则“”是“有4个不同的实数根”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件11.已知函数的导函数的图象如图所示,那么()A.是函数的极小值点B.是函数的极大值点C.是函数的极大值点D.函数有两个极值点12.设集合,若,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若直线为曲线的一条切线,则实数的值是______.14.若圆柱的轴截面为正方形,且此正方形面积为4,则该圆柱的体积为______.15.已知复数,那么复数的模为______.16.已知等比数列的前项和为,若,,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)证明:函数在内存在唯一零点;(2)已知,若函数有两个相异零点,且(为与无关的常数),证明:.18.(12分)若,解关于的不等式.19.(12分)已知菱形所在平面,,为线段的中点,为线段上一点,且.(1)求证:平面;(2)若,求二面角的余弦值.20.(12分)在中,角所对的边分别是,已知.(1)求;(2)若,且,求的面积.21.(12分)双曲线的虚轴长为,两条渐近线方程为.(1)求双曲线的方程;(2)双曲线上有两个点,直线和的斜率之积为,判别是否为定值,;(3)经过点的直线且与双曲线有两个交点,直线的倾斜角是,是否存在直线(其中)使得恒成立?(其中分别是点到的距离)若存在,求出的值,若不存在,请说明理由.22.(10分)如图,在三棱锥中,,为的中点,平面,垂足落在线段上,为的重心,已知,,,.(1)证明:平面;(2)求异面直线与所成角的余弦值;(3)设点在线段上,使得,试确定的值,使得二面角为直二面角.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】分析:根据相关系数的性质,最大,则其拟合效果最好,进行判断即可.详解:线性回归分析中,相关系数为r,越接近于1,相关程度越大;
越小,相关程度越小,
∵模型3的相关系数最大,∴模拟效果最好,
故选:A.点睛:本题主要考查线性回归系数的性质,在线性回归分析中,相关系数为r,越接近于1,相关程度越大;越小,相关程度越小.2、B【解题分析】∵三个数,,的和为1,其平均数为∴三个数中至少有一个大于或等于假设,,都小于,则∴,,中至少有一个数不小于故选B.3、B【解题分析】
计算,根据纯虚数的概念,可得,然后根据复数的模的计算,可得结果.【题目详解】为纯虚数,,,故选:B【题目点拨】本题考查复数中纯虚数的理解以及复数的模的计算,审清题干,细心计算,属基础题.4、A【解题分析】分五类:(1)甲乙都不选:;(2)选甲不选乙:;(3)选乙不选甲:;(4)甲乙都选:;故由加法计数原理可得,共种,应选答案A。点睛:解答本题的关键是深刻充分理解题意,灵活运用排列数、组合数公式及分步计数原理和分类计数原理两个基本原理。求解依据题设条件将问题分为四类,然后运用排列数、组合数公式及分步计数原理和分类计数原理两个基本原理求出问题的答案,使得问题获解。5、D【解题分析】
按照补集、交集的定义,即可求解.【题目详解】,,.
故选:D.【题目点拨】本题考查集合的混合计算,属于基础题.6、B【解题分析】
试题分析:根据列联表数据得到7.8,发现它大于3.325,得到有99%以上的把握认为“爱好这项运动与性别有关”,从而可得结论.解:∵7.8>3.325,∴有1.11=1%的机会错误,即有99%以上的把握认为“爱好这项运动与性别有关”故选B.点评:本题考查独立性检验的应用,考查利用临界值,进行判断,是一个基础题7、A【解题分析】
计算长方形面积,利用定积分计算阴影部分面积,由面积测度的几何概型计算概率即可.【题目详解】由已知易得:,由面积测度的几何概型:质点落在图中阴影区域外的概率故选:A【题目点拨】本题考查了面积测度的几何概型,考查了学生转化划归,数学运算的能力,属于基础题.8、D【解题分析】
由复数的基本运算将其化为形式,z对应的点为【题目详解】由题可知,所以z对应的点为,位于第四象限.故选D.【题目点拨】本题考查复数的运算以及复数的几何意义,属于简单题.9、A【解题分析】
先化简求出集合A,B,进而求出A∩B.【题目详解】∵集合A={x|x-3xB={x|x≥0},∴A∩B={x|0<x≤3}.故选:A.【题目点拨】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.10、B【解题分析】分析:利用函数的奇偶性将有四个不同的实数根,转化为时,有两个零点,利用导数研究函数的单调性,结合图象可得,从而可得结果.详解:是偶函数,有四个不同根,等价于时,有两个零点,时,,,时,恒成立,递增,只有一个零点,不合题意,时,令,得在上递增;令,得在上递减,时,有两个零点,,,得,等价于有四个零点,“”是“有4个不同的实数根”的必要不充分条件,故选B.点睛:本题考查函数的单调性、奇偶性以及函数与方程思想的应用,所以中档题.函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数的零点函数在轴的交点方程的根函数与的交点.11、C【解题分析】
通过导函数的图象可知;当在时,;当在时,,这样就可以判断有关极值点的情况.【题目详解】由导函数的图象可知:当在时,,函数单调递增;当在时,,函数单调递减,根据极值点的定义,可以判断是函数的极大值点,故本题选C.【题目点拨】本题考查了通过函数导函数的图象分析原函数的极值点的情况.本题容易受导函数的单调性的干扰.本题考查了识图能力.12、B【解题分析】分析:先根据得到=1即得a=2,再根据求出b的值,再求则.详解:因为,所以=1,所以a=2.又因为,所以b=1,所以Q={2,1},所以.故答案为:B.点睛:(1)本题主要考查集合的交集补集运算,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答集合中的参数问题,要注意检验,一是检验是否满足集合元素的互异性,二是检验是否满足每一个条件.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】设切点为,又,所以切点为(0,1)代入直线得b=114、【解题分析】
根据圆柱的结构特征可知底面半径和高,代入体积公式计算即可.【题目详解】解:∵圆柱的轴截面是正方形,且面积为4,∴圆柱的底面半径,高,∴圆柱的体积.故答案为.【题目点拨】本题考查了圆柱的结构特征和体积的计算,属于基础题.15、【解题分析】
由模长性质求解即可.【题目详解】因为,故.故答案为:【题目点拨】本题主要考查模长的性质,若,则.若,则.属于基础题型.16、【解题分析】
设等比数列的公比为,根据题中条件求出的值,再由计算出的值.【题目详解】设等比数列的公比为,则,化简得,,故答案为:.【题目点拨】本题考查等比数列求和,对于等比数列,一般要建立首项和公比的方程组,利用方程思想求解,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析【解题分析】
(1)先利用导数确定单调性,再利用零点存在定理证明结论,(2)先求,再结合恒成立转化证明,即需证,根据条件消,令,转化证,即需证,这个不等式利用导数易证.【题目详解】(1),令,则在上恒成立,所以,在上单调递减,,,根据零点存在定理得,函数在存在唯一零点,当时,,所以在存在唯一零点;(2)因为,,所以,不妨设,因为,所以,,所以,,因为,,而要求满足的b的最大值,所以只需证明.所以(*)令,则,所以(*),令,则,所以在上单调递增,即综上,.【题目点拨】本题考查利用导数研究函数零点以及利用导数证明不等式,考查综合分析论证能力,属难题.18、见解析【解题分析】
本题是含有参数的解不等式,可以先将不等式转化为的形式,再通过分类讨论参数得出解.【题目详解】时,且;时,等价于因为,所以,所以不等式可化简为当时,或.当时,,或综上所述,时,且;0时或时,或}【题目点拨】在解含有参数的不等式的时候,一定要注意参数的取值范围并进行分类讨论.19、(1)见解析;(2).【解题分析】分析:(1)取的中点,连接,得,由线面平行的判定定理得平面,连接交与点,连接,得,进而得平面,再由面面平行的判定,得平面平面,进而得到平面.(2)建立空间直角坐标系,求解平面和平面的法向量,利用向量的夹角公式,即可求解.详解:(1)证明:取的中点,连接∵为的中点,∴∴平面.……2分连接交与点,连接∵为的中点,∴∴平面……4分∵∴平面平面又平面∴平面.…………6分(2)如图,建立空间直角坐标系则∴………7分设平面的法向量为则,即不放设得……8分设平面的法向量为则,即不放设得……10分则二面角的余弦值为……12分点睛:本题考查了立体几何中的直线与平面,平面与平面平行的判定及应用,以及二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.20、(Ⅰ);(Ⅱ).【解题分析】试题分析:利用正弦定理和余弦定理及三角形面积公式解斜三角形是高考高频考点,利用正弦定理和余弦定理进行边转角或角转边是常用的方法,本题利用正弦定理“边转角”后,得出角C,第二步利用余弦定理求出边a,c,再利用面积公式求出三角形的面积.试题解析:(1)由正弦定理,得,因为,解得,.(2)因为.由余弦定理,得,解得.的面积.【题目点拨】利用正弦定理和余弦定理及三角形面积公式解斜三角形是高考高频考点,利用正弦定理和余弦定理进行边转角或角转边是常用的方法,已知两边及其夹角求第三边或已知三边求任意角使用于心定理,已知两角及任意边或已知两边及一边所对的角借三角形用正弦定理,另外含经常利用三角形面积公式以及与三角形的内切圆半径与三角形外接圆半径发生联系,要灵活使用公式.21、(1);(2)8;(3)存在且【解题分析】分析:(1)根据题意,双曲线的虚轴长为,两条渐近线方程为.易求求双曲线的方程;(2)设直线的斜率,显然,联立得,求出,,可证;(3)设直线方程,联立,(*),∵,方程总有两个解,设,得到,根据得,整理得,由,则符合题目要求,存在直线.详解:(1)双曲线;(2)设直线的斜率,显然,联立得,,,;(3)设直线方程,联立,(*),∵,方程总有两个解,设,,根据得,整理得,∵,∴符合题目要求,存在直线.点睛:本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中班语言活动古诗教案《江雪》
- 2021-2022学年二年级下学期数学数学广角-《推理》(教案)
- 2024年原材料供应与加工合同
- 大班主题活动教案:线的大集合
- 学校家长会管理制度
- 二年级下册数学教案- 6 有余数的除法 -人教新课标
- 大班主题教案《玩水》
- 副主任医师在科研项目中的总结
- 2024年公寓购买协议
- 2024年二手集装箱买卖协议
- 招贴设计 课件完整版
- 临时用工安全安全教育
- DB32-T 2888.1-2016江苏省国家教育考试标准化考点建设技术标准 第1部分-总则-(高清现行)
- GB∕T 33217-2016 冲压件毛刺高度
- 贷款客户信息登记表
- 河南科学技术出版社小学信息技术三年级上册教案
- 最新培训机构学员报名表模板
- 07FK02防空地下室通风设备安装PDF高清图集
- Q∕SY 08124.21-2017 石油企业现场安全检查规范 第21部分:地下储气库站场
- 三甲医院(三级甲等)建设标准新
- 危险源辨识与风险评价全流程讲解
评论
0/150
提交评论