版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
亳州市重点中学2024届数学高二第二学期期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,从地面上C,D两点望山顶A,测得它们的仰角分别为45°和30°,已知米,点C位于BD上,则山高AB等于()A.100米 B.米 C.米 D.米2.函数在的图象大致为()A. B.C. D.3.已知函数f(x)=13x3-12A.(0,1) B.(3,+∞) C.(0,2) D.(1,+∞)4.已知为虚数单位,,则复数的虚部为()A. B.1 C. D.5.已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为A. B. C. D.6.用反证法证明命题:“若实数,满足,则,全为0”,其反设正确的是()A.,至少有一个为0 B.,至少有一个不为0C.,全不为0 D.,全为07.设集合,则()A.[-4,-2] B.(-∞,1] C.[1,+∞) D.(-2,1]8.圆ρ=8sinθ的圆心到直线A.2 B.3 C.2 D.29.设是函数的导函数,则的值为()A. B. C. D.10.已知双曲线:的左、右焦点分别为,,以线段为直径的圆与双曲线的渐近线在第一象限的交点为,且满足,则的离心率满足()A. B. C. D.11.某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为()()A. B. C. D.12.已知数列为等差数列,且,则的值为A. B.45 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.三棱锥P﹣ABC中,PA=PB=AB=AC=BC,M是PA的中点,N是AB的中点,当二面角P﹣AB﹣C为时,则直线BM与CN所成角的余弦值为______.14.已知函数f(x)=ex+x3,若f(15.调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:=0.245x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加_______万元.16.已知定义域为的偶函数的导函数为,对任意,均满足:.若,则不等式的解集是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,其中左焦点.(1)求出椭圆的方程;(2)若直线与曲线交于不同的两点,且线段的中点在曲线上,求的值.18.(12分)已知函数.(1)求函数的单调区间;(2)求证:.19.(12分)现有男选手名,女选手名,其中男女队长各名.选派人外出比赛,在下列情形中各有多少种选派方法?(结果用数字表示)(1)男选手名,女选手名;(2)至少有名男选手;(3)既要有队长,又要有男选手.20.(12分)已知椭圆E的方程为y2=1,其左焦点和右焦点分别为F1,F2,P是椭圆E上位于第一象限的一点(1)若三角形PF1F2的面积为,求点P的坐标;(2)设A(1,0),记线段PA的长度为d,求d的最小值.21.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,满足(2b﹣c)cosA=acosC.(1)求角A;(2)若,b+c=5,求△ABC的面积.22.(10分)设函数.(1)求的单调区间;(2)若对任意的都有恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
设,,中,分别表示,最后表示求解长度.【题目详解】设,中,,,中,,解得:米.故选C.【题目点拨】本题考查了解三角形中有关长度的计算,属于基础题型.2、C【解题分析】,为偶函数,则B、D错误;又当时,,当时,得,则则极值点,故选C.点睛:复杂函数的图象选择问题,首先利用对称性排除错误选项,如本题中得到为偶函数,排除B、D选项,在A、C选项中,由图可知,虽然两个图象在第一象限都是先增后减,但两个图象的极值点位置不同,则我们采取求导来判断极值点的位置,进一步找出正确图象.3、B【解题分析】
由三次函数的性质,求出导函数,确定函数的极值,最后由极大值大于0,极小值小于0可得a的范围.【题目详解】f'(x)=x易知x<-a或x>1时f'(x)>0,当-a<x<1时,f'(x)<0,∴f(x)极大值=f(-a)=∴16a3故选B.【题目点拨】本题考查函数的零点,考查用导数研究函数的极值.求极值时要注意在极值点的两侧,f'(x)的符号要相反.4、A【解题分析】
给两边同乘以,化简求出,然后可得到其虚部【题目详解】解:因为,所以所以,所以虚部为故选:A【题目点拨】此题考查复数的运算和复数的有关概念,属于基础题5、D【解题分析】分析:设,则根据平面几何知识可求,再结合椭圆定义可求离心率.详解:在中,设,则,又由椭圆定义可知则离心率,故选D.点睛:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义.6、B【解题分析】
反证法证明命题时,首先需要反设,即是假设原命题的否定成立即可.【题目详解】因为命题“若实数,满足,则,全为0”的否定为“若实数,满足,则,至少有一个不为0”;因此,用反证法证明命题:“若实数,满足,则,全为0”,其反设为“,至少有一个不为0”.故选B【题目点拨】本题主要考查反证的思想,熟记反证法即可,属于常考题型.7、B【解题分析】分析:先解不等式得出集合B,再由集合的运算法则计算.详解:由题意,,∴.故选B.点睛:本题考查集合的运算,解题关键是确定集合的元素,要注意集合的代表元是什么,由代表元确定如何求集合中的元素.8、C【解题分析】
先把圆和直线的极坐标方程化成直角坐标方程,再利用点到直线的距离公式求解.【题目详解】由ρ=8sinθ得x2+y直线tanθ=3的直角坐标方程为所以圆心到直线3x-y=0的距离为0-4故选:C【题目点拨】本题主要考查极坐标方程和直角坐标方程的互化,考查点到直线的距离的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.9、C【解题分析】分析:求导,代值即可.详解:,则.故选:C.点睛:对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.10、D【解题分析】分析:联立圆与渐近线方程,求得M的坐标,由,得点在双曲线右支上,代入双曲线方程化简即可求.详解:由,得,即,由,,即由,化简得,即,故选D.点睛:本题考查双曲线的简单几何性质,点到直线的距离公式,考查计算能力,属于中档题.11、A【解题分析】试题分析:分析题意可知,问题等价于圆锥的内接长方体的体积的最大值,设长方体体的长,宽,高分别为,,,长方体上底面截圆锥的截面半径为,则,如下图所示,圆锥的轴截面如图所示,则可知,而长方体的体积,当且仅当,时,等号成立,此时利用率为,故选A.考点:1.圆锥的内接长方体;2.基本不等式求最值.【名师点睛】本题主要考查立体几何中的最值问题,与实际应用相结合,立意新颖,属于较难题,需要考生从实际应用问题中提取出相应的几何元素,再利用基本不等式求解,解决此类问题的两大核心思路:一是化立体问题为平面问题,结合平面几何的相关知识求解;二是建立目标函数的数学思想,选择合理的变量,或利用导数或利用基本不等式,求其最值.12、B【解题分析】由已知及等差数列性质有,故选B.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
先连结PN,根据题意,∠PNC为二面角P-AB-C的平面角,得到∠PNC=,根据向量的方法,求出两直线方向向量的夹角,即可得出结果.【题目详解】解:连结PN,因为N为AB中点,PA=PB,CA=CB,所以,,所以,∠PNC为二面角P-AB-C的平面角,所以,∠PNC=,设PA=PB=AB=AC=BC=2,则CN=PN=BM=,,设直线BM与CN所成角为,,【题目点拨】本题主要考查异面直线所成的角,灵活运用向量法求解即可,属于常考题型.14、(1,2)【解题分析】因为f'(x)=ex+3x2>0,所以函数f(x)为增函数,所以不等式15、0.245【解题分析】当变为时,=0.245(x+1)+0.321=0.245x+0.321+0.245,而0.245x+0.321+0.245-(0.245x+0.321)=0.245.因此家庭年收入每增加1万元,年饮食支出平均增加0.245万元,本题填写0.245.16、【解题分析】
先根据已知得出函数的单调性,再根据单调性解不等式.【题目详解】因为是上的偶函数,所以是上的偶函数,在上单调递增,,即解得,解集为.【题目点拨】本题主要考查函数与单调性的关系,注意构造的新函数的奇偶性及单调性的判断.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解题分析】
(1)根据离心率和焦点坐标求出,从而得到椭圆方程;(2)将直线方程与椭圆方程联立,利用韦达定理表示出点横坐标,代入直线得到坐标;再将代入曲线方程,从而求得.【题目详解】(1)由题意得:,解得:,所以椭圆的方程为:(2)设点,,线段的中点为由,消去得由,解得:所以,因为点在曲线上所以解得:或【题目点拨】本题考查直线与椭圆的综合应用问题,关键是能够通过联立,将中点坐标利用韦达定理表示出来,从而利用点在曲线上构造方程,求得结果.18、(1)在,上单调递增,在上单调递减;(2)证明见解析.【解题分析】
(1)先对求导,通过导函数与0的大小比较即可得到单调区间.(2),从而利用(1)中相关结论求出的极值点证明不等式.【题目详解】(1),.,函数在,上单调递增,在上单调递减.(2)证明:.由(1)知在,上单调递增,在上单调递减,且时,,且时,,在时取得最小值,即,故.【题目点拨】本题主要考查利用导函数求解函数增减区间,利用导函数证明不等式,意在考查学生的分析能力,转化能力及逻辑推理能力,难度中等.19、(1)30;(2)65;(3)51.【解题分析】
(1)先选两名男选手,再选两名女选手,乘法原理得到答案.(2)用总的选择方法减去全是女选手的方法得到答案.(3)分为有男队长和没有男队长两种情况,相加得到答案.【题目详解】(1)第一步:选名男运动员,有种选法.第二步:选名女运动员,有种选法.共有(种)选法.(2)至少有名男选手”的反面为“全是女选手”.从人中任选人,有种选法,其中全是女选手的选法有种.所以“至少有名女运动员”的选法有(种).(3)当有男队长时,其他人选法任意,共有种选法.不选男队长时,必选女队长,共有种选法,其中不含男选手的选法有种,所以不选男队长时,共有种选法.故既要有队长,又要有男选手的选法有(种).【题目点拨】本题考查了排列组合问题的计算,意在考查学生的计算能力和解决问题的能力.20、(1)P(1,)(2)【解题分析】
(1)设P(x,y);,根据三角形PF1F2的面积为列等式解得,再代入椭圆方程可得,即可得到答案;(2)根据两点间的距离公式得到的函数关系式,再根据二次函数求最值可得结果.【题目详解】椭圆E的方程为y2=1,其左焦点和右焦点分别为F1,F2,所以:椭圆的顶点坐标(±2,0);(0,±1),焦点:F1(,0),F2(,0),|F1F2|=2;P是椭圆E上位于第一象限的一点,设P(x,y);;(1)若三角形PF1F2的面积为,即:|F1F2|×y;解得:y,因为P是椭圆E上位于第一象限的一点,满足椭圆的方程,代入椭圆方程得:x=1,所以:点P的坐标P(1,);(2)设A(1,0),记线段PA的长度为d,P是椭圆E上位于第一象限的一点,所以:d.因为,所以时,d有最小值,所以d的最小值d.【题目点拨】本题考查了椭圆的几何性质,考查了三角形的面积公式,考查了两点间的距离公式,考查了二次函数求最值,属于中档题.21、(1)A.(2).【解题分析】
(1)利用正弦定理完成边化角,再根据在三角形中有,完成化简并计算出的值;(2)利用的值以及余弦定理求解出的值,再由面积公式即可求解出△ABC的面积.【题目详解】(1)在三角形ABC中,∵(2b﹣c)cosA=acosC,由正弦定理得:(2sinB﹣sinC)cosA=sinAcosC,化为:2sinBcosA=sinCcosA+sinAcosC=sin(A+C)=sinB,sinB≠0,解得cosA,,∴A.(2)由余弦定理得a2=b2+c2﹣2bccosA,∵a,b+c=5,∴13=(b+c)2﹣3cb=52﹣3bc,化为bc=4,所以三角形ABC的面积SbcsinA4.【题目点拨】本题考查解三角形的综合运用,难度一般.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 军事行业安全工作总结
- 构建良好班级氛围的培训总结
- 《新脑血管病的预防》课件
- 2024年江苏省泰州市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2022年江西省景德镇市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2021年青海省西宁市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2023年湖北省宜昌市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2022年河南省洛阳市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2024年云南省丽江市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 《危险货物运输包装》课件
- 书法知识之章法布局
- 2023乙型肝炎病毒标志物临床应用专家共识(完整版)
- 23J916-1:住宅排气道(一)
- 储能项目用户侧投资测算表
- 【解析】教科版(广州)2023-2023学年小学英语五年级上册分类专项复习卷:阅读
- 月日上午王一凡把问题当做教育的资源 优秀奖
- 脊柱四肢及肛门直肠检查
- 高中政治期末综合检测部编版选修1
- 铸造基础知识及常见铸造缺陷简介课件
- 历史(中职)PPT全套教学课件
- 药物分离技术教材吴昊课后参考答案
评论
0/150
提交评论