版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省忻州一中2024届数学高二第二学期期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一位母亲根据儿子岁身高的数据建立了身高与年龄(岁)的回归模型,用这个模型预测这个孩子岁时的身高,则正确的叙述是()A.身高在左右 B.身高一定是C.身高在以上 D.身高在以下2.长方体中,是对角线上一点,是底面上一点,若,,则的最小值为()A. B. C. D.3.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为()A.0.2 B.0.4 C.0.5 D.0.64.若均为非负整数,在做的加法时各位均不进位(例如,),则称为“简单的”有序对,而称为有序数对的值,那么值为2964的“简单的”有序对的个数是()A.525 B.1050 C.432 D.8645.袋中有大小完全相同的2个红球和2个黑球,不放回地依次摸出两球,设“第一次摸得黑球”为事件,“摸得的两球不同色”为事件,则概率为()A. B. C. D.6.已知实数满足,则下列说法错误的是()A. B.C. D.7.函数过原点的切线的斜率为()A. B.1 C. D.8.在同一直角坐标系中,曲线y=sin(x+πA.y=13C.y=3sin(2x+9.函数在的图像大致为()A. B.C. D.10.与终边相同的角可以表示为A. B.C. D.11.已知是两个非空集合,定义集合,则结果是()A. B. C. D.12.已知随机变量,且,则()A.1.25 B.1.3 C.1.75 D.1.65二、填空题:本题共4小题,每小题5分,共20分。13.定积分的值为_____.14.已知定义在实数集上的偶函数在区间上是增函数.若存在实数,对任意的,都有,则正整数的最大值为__________.15.若幂函数为上的增函数,则实数m的值等于______.16.若函数的最小值为,则实数的取值范围为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若函数有两个不同的零点,求实数的取值范围;(2)若在上恒成立,求实数的取值范围.18.(12分)如图,多面体,平面平面,,,,是的中点,是上的点.(Ⅰ)若平面,证明:是的中点;(Ⅱ)若,,求二面角的平面角的余弦值.19.(12分)如图,在多面体中,底面为菱形,底面,.(1)证明:平面;(2)若,,当长为多少时,平面平面.20.(12分)已知函数.(Ⅰ)当时,求在上的零点个数;(Ⅱ)当时,若有两个零点,求证:21.(12分)已知函数.(1)当时,求函数的单调区间;(2)函数在上是减函数,求实数a的取值范围.22.(10分)某IT从业者绘制了他在26岁~35岁(2009年~2018年)之间各年的月平均收入(单位:千元)的散点图:(1)由散点图知,可用回归模型拟合与的关系,试根据附注提供的有关数据建立关于的回归方程(2)若把月收入不低于2万元称为“高收入者”.试利用(1)的结果,估计他36岁时能否称为“高收入者”?能否有95%的把握认为年龄与收入有关系?附注:①.参考数据:,,,,,,,其中,取,②.参考公式:回归方程中斜率和截距的最小二乘估计分别为:,P(K2≥k)0.0500.0100.001k3.8416.63510.828③..
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
由线性回归方程的意义得解.【题目详解】将代入线性回归方程求得由线性回归方程的意义可知是预测值,故选.【题目点拨】本题考查线性回归方程的意义,属于基础题.2、A【解题分析】
将绕边旋转到的位置,使得平面和平面在同一平面内,则到平面的距离即为的最小值,利用勾股定理解出即可.【题目详解】将绕边旋转到的位置,使得平面和平面在同一平面内,过点作平面,交于点,垂足为点,则为的最小值.,,,,,,,,故选A.【题目点拨】本题考查空间距离的计算,将两折线段长度和的计算转化为同一平面上是解决最小值问题的一般思路,考查空间想象能力,属于中等题.3、B【解题分析】区间[22,31)内的数据共有4个,总的数据共有11个,所以频率为1.4,故选B.4、B【解题分析】分析:由题意知本题是一个分步计数原理,第一位取法两种为0,1,2,第二位有10种从0,1,2,3,4,5,6,7,8,9第三位有7种,0,1,2,3,4,5,6第四为有5种,0,1,2,3,4根据分步计数原理得到结果.详解:由题意知本题是一个分步计数原理,第一位取法两种为0,12第二位有10种从0,1,2,3,4,5,6,7,8,9第三位有7种,0,1,2,3,4,5,6第四为有5种,0,1,23,4根据分步计数原理知共有3×10×7×5=1050个故答案为:B.点睛:解答排列、组合问题的角度:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手.(1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”;(2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等;(3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决;(4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决.5、B【解题分析】
根据题目可知,求出事件A的概率,事件AB同时发生的概率,利用条件概率公式求得,即可求解出答案.【题目详解】依题意,,,则条件概率.故答案选B.【题目点拨】本题主要考查了利用条件概率的公式计算事件的概率,解题时要理清思路,注意的求解.6、A【解题分析】
设,证明单调递增,得到,构造函数根据单调性到正确,取,,则不成立,错误,得到答案.【题目详解】设,则恒成立,故单调递增,,即,即,.取,,则不成立,错误;设,则恒成立,单调递增,故,就,正确;同理可得:正确.故选:.【题目点拨】本题考查了根据函数的单调性比较式子大小,意在考查学生对于函数性质的综合应用.7、A【解题分析】分析:设切点坐标为(a,lna),求函数的导数,可得切线的斜率,切线的方程,代入(0,0),求切点坐标,切线的斜率.详解:设切点坐标为(a,lna),∵y=lnx,∴y′=,切线的斜率是,切线的方程为y﹣lna=(x﹣a),将(0,0)代入可得lna=1,∴a=e,∴切线的斜率是=故选:A.点睛:与导数几何意义有关问题的常见类型及解题策略①已知切点求切线方程.解决此类问题的步骤为:①求出函数在点处的导数,即曲线在点处切线的斜率;②由点斜式求得切线方程为.②已知斜率求切点.已知斜率,求切点,即解方程.③求切线倾斜角的取值范围.先求导数的范围,即确定切线斜率的范围,然后利用正切函数的单调性解决.8、C【解题分析】
由x'=12x【题目详解】由伸缩变换得x=2x',y=13即y'=3sin(2x'+【题目点拨】本题考查伸缩变换后曲线方程的求解,理解伸缩变换公式,准确代入是解题的关键,考查计算能力,属于基础题。9、C【解题分析】
利用定义考查函数的奇偶性,函数值的符号以及与的大小关系辨别函数的图象.【题目详解】,所以,函数为奇函数,排除D选项;当时,,则,排除A选项;又,排除B选项.故选C.【题目点拨】本题考查函数图象的辨别,在给定函数解析式辨别函数图象时,要考查函数的定义域、奇偶性、单调性、零点以及特殊值,利用这五个要素逐一排除不符合要求的选项,考查分析问题的能力,属于中等题.10、C【解题分析】
将变形为的形式即可选出答案.【题目详解】因为,所以与终边相同的角可以表示为,故选C.【题目点拨】本题考查了与一个角终边相同的角的表示方法,属于基础题.11、C【解题分析】
根据定义集合分析元素特征即可得解.【题目详解】因为表示元素在中但不属于,那么表示元素在中且在中即,故选C.【题目点拨】本题考查了集合的运算,结合题中给出的运算规则即可进行运算,属于基础题,12、C【解题分析】
利用正态分布的图像和性质求解即可.【题目详解】由题得,所以.故选:C【题目点拨】本题主要考查正态分布的图像和性质,考查指定概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】14、【解题分析】分析:先根据单调性得对任意的都成立,再根据实数存在性得,即得,解得正整数的最大值.详解:因为偶函数在区间上是增函数,对任意的,都有,所以对任意的都成立,因为存在实数,所以即得,因为成立,,所以正整数的最大值为4.点睛:对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法,使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.15、4【解题分析】
由函数为幂函数得,求出的值,再由幂函数在上是增函数求出满足条件的值.【题目详解】由幂函数为幂函数,可得,解得或0,又幂函数在区间上是增函数,,时满足条件,故答案为4.【题目点拨】本题主要考查幂函数的定义与性质,意在考查对基础知识的掌握与应用,属于中档题.高考对幂函数要求不高,只需掌握简单幂函数的图象与性质即可.16、【解题分析】
分析函数的单调性,由题设条件得出,于此求出实数的取值范围。【题目详解】当时,,此时,函数单调递减,则;当时,,此时,函数单调递增。由于函数的最小值为,则,得,解得.因此,实数的取值范围是,故答案为:。【题目点拨】本题考查分段函数的最值问题,求解时要分析函数的单调性,还要注意分界点处函数值的大小关系,找出一些关键的点进行分析,考查分析问题,属于中等题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)先对求导,然后分别讨论和时的情况,从而得到的取值范围;(2)可令,再求导,就和两种情况再分别讨论恒成立问题即可得到答案.【题目详解】(1)①当时,恒成立,故在上递增,最多一个零点,不合题意;②当时,,,在上递增,在上递减,且时,,时,故要有两个零点,只需,解得:,综合①、②可知,的范围是:.(2)令,①当,恒成立,在上递增,,符合题意;②当时,在上递增,在上递增,又,若,即时,恒成立,同①,符合题意,若,即时,存在,使,时,,时,,在递减,在上递增,而,故不满足恒成立,综上所述,的范围是:.【题目点拨】本题主要考查利用导函数求解零点中含参问题,恒成立中含参问题,意在考查学生的转化能力,对学生的分类讨论的思想要求较高,难度较大.18、(Ⅰ)详见解析;(Ⅱ).【解题分析】
(Ⅰ)利用线面平行的性质定理,可以证明出,,利用平行公理可以证明出,由中位线的性质可以证明出N是DP的中点;(Ⅱ)方法1:在平面ABCD中作于垂足G,过G作于H,连接AH,利用面面垂直和线面垂直,可以证明出为二面角的平面角,在直角三角形中,利用锐角三角函数,可以求出二面角的平面角的余弦值;方法2:由平面平面PBC,可以得到平面PBC,,而即,于是可建立如图空间直角坐标系(C为原点),利用空间向量的数量积,可以求出二面角的平面角的余弦值.【题目详解】(I)设平面平面,因为平面PBC,平面ADP,所以,又因为,所以平面PBC,所以,所以,又因为M是AP的中点,所以N是DP的中点.(II)方法1:在平面ABCD中作于垂足G,过G作于H,连接AH(如图),因为平面平面PBC,,所以平面PBC,,,,所以平面PBC,,所以平面,所以为二面角的平面角,易知,,又,所以在中,易知,,,所以.(II)方法2:因为平面平面PBC,所以平面PBC,,而即,于是可建立如图空间直角坐标系(C为原点),得,,,所有,,设平面APB的法向量为,则,,不妨取,得,可取平面PBC的法向量为,所求二面角的平面角为,则.【题目点拨】本题考查了线线平行的证明,考查了线面平行的判定定理和性质定理,考查了面面垂直的性质定理和线面垂直的判定定理,考查了利用空间向量数量积求二面角的余弦值问题问题.19、(1)证明见解析;(2)1【解题分析】
(1)先证明面面,从而可得平面.
(2)设的中点为,以为原点,,,分别为,,轴,建立坐标系,设,易知平面的法向量为,求出平面的法向量,根据法向量垂直可求解.【题目详解】证明:(1):∵,面,面,∴面.同理面,又,面,面,∴面面,又面,∴平面.(2)∵,,∴,设的中点为,连接,则.以为原点,,,分别为,,轴,建立坐标系.则,,,令,则,,.设平面的法向量为,则,即,令,则,∴.易知平面的法向量为,当平面平面时,,解之得.所以当时,平面平面.【题目点拨】本题考查线面平行的证明和根据面面垂直求线段的长度,属于中档题.20、(Ⅰ)有一个零点;(Ⅱ)见解析【解题分析】
(Ⅰ)对函数求导,将代入函数,根据函数在单调性讨论它的零点个数.(Ⅱ)根据函数单调性构造新的函数,进而在各区间讨论函数零点个数,证明题目要求.【题目详解】因为,在上递减,递增(Ⅰ)当时,在上有一个零点(Ⅱ)因为有两个零点,所以即.设则要证,因为又因为在上单调递增,所以只要证设则所以在上单调递减,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025下半年广东省江门开平市事业单位招聘职员128人历年高频重点提升(共500题)附带答案详解
- 2025下半年四川省广元市事业单位考试招聘13人高频重点提升(共500题)附带答案详解
- 2025上海大学行政管理岗位及部分教育辅助岗位公开招聘19人高频重点提升(共500题)附带答案详解
- 2025上半年贵州遵义市事业单位招聘1985人历年高频重点提升(共500题)附带答案详解
- 2025上半年四川自贡贡井区事业单位聘用工作人员120人历年高频重点提升(共500题)附带答案详解
- 2025上半年四川泸州古蔺县事业单位招聘工作人员189人历年高频重点提升(共500题)附带答案详解
- 高科技企业总经理招聘合同样本
- 2024年大宗货物运输与智能仓储解决方案合同范本3篇
- 万能工团队招聘合同
- 羽毛球运动员晋升制度
- 概率论与数理统计智慧树知到期末考试答案章节答案2024年中国农业大学
- 生产建设项目水土保持设施验收技术规程-编制说明
- 人工智能设计伦理智慧树知到期末考试答案章节答案2024年浙江大学
- 2024春期国开电大本科《经济学(本)》在线形考(形考任务1至6)试题及答案
- 2024年包头职业技术学院单招职业适应性测试题库及答案1套
- (附答案)2024公需课《百县千镇万村高质量发展工程与城乡区域协调发展》试题广东公需科
- 2024年中国eVTOL产业(低空经济)发展报告
- 2024-2030年国内医用诊断显示器行业市场深度分析及发展前景及投资机会研究报告
- 电化学储能电站安全规程
- 临床试验观察表(CRF)
- 2024年江苏宿迁永泽福寿园殡葬服务有限公司招聘笔试参考题库含答案解析
评论
0/150
提交评论