版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届贵州省湄潭县湄江中学数学高二第二学期期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数在区间上有最大值无最小值,则实数的取值范围()A. B. C. D.2.已知数列为等差数列,且,则的值为A. B.45 C. D.3.命题p:x∈R,ax2﹣2ax+1>0,命题q:指数函数f(x)=ax(a>0且a≠1)为减函数,则P是q的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件4.已知函数在处取极值10,则()A.4或 B.4或 C.4 D.5.某个命题与正整数有关,如果当时命题成立,那么可推得当时命题也成立.现已知当时该命题不成立,那么可推得()A.当时该命题不成立 B.当时该命题成立C.当时该命题不成立 D.当时该命题成立6.设数列是单调递减的等差数列,前三项的和为12,前三项的积为28,则()A.1B.4C.7D.1或77.变量满足约束条件,若的最大值为2,则实数等于()A.—2 B.—1 C.1 D.28.已知,则下列结论中错误的是()A.B..C.D.9.已知,则中()A.至少有一个不小于1 B.至少有一个不大于1C.都不大于1 D.都不小于110.某大型联欢会准备从含甲、乙的6个节目中选取4个进行演出,要求甲、乙2个节目中至少有一个参加,且若甲、乙同时参加,则他们演出顺序不能相邻,那么不同的演出顺序的种数为()A.720 B.520 C.600 D.26411.已知,为的导函数,则的图象是()A. B.C. D.12.已知命题,;命题若,则,下列命题为真命题的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的值域为,函数的单调减区间为,则________.14.极坐标方程化成直角坐标方程是__________.15.设,,,则a,b,c的大小关系用“”连接为______.16.已知正方体的棱长为2,是棱的中点,点在正方体内部或正方体的表面上,且平面,则动点的轨迹所形成的区域面积是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)世界那么大,我想去看看,每年高考结束后,处于休养状态的高中毕业生旅游动机强烈,旅游可支配收入日益增多,可见高中毕业生旅游是一个巨大的市场.为了解高中毕业生每年旅游消费支出(单位:百元)的情况,相关部门随机抽取了某市的1000名毕业生进行问卷调查,并把所得数据列成如下所示的频数分布表:组别[0,20)[20,40)[40,60)[60,80)[80,100)频数22504502908(1)求所得样本的中位数(精确到百元);(2)根据样本数据,可近似地认为学生的旅游费用支出服从正态分布,若该市共有高中毕业生35000人,试估计有多少位同学旅游费用支出在8100元以上;(3)已知样本数据中旅游费用支出在[80,100)范围内的8名学生中有5名女生,3名男生,现想选其中3名学生回访,记选出的男生人数为,求的分布列与数学期望.附:若,则,18.(12分)在直角坐标系中,圆的参数方程为以为极点,轴的非负半轴为极轴建立极坐标系.(1)求圆的普通方程;(2)直线的极坐标方程是,射线:与圆的交点为、,与直线的交点为,求线段的长.19.(12分)已知命题:对,函数总有意义;命题:函数在上是增函数.若命题“”为真命题且“”为假命题,求实数的取值范围.20.(12分)在中,内角对边的边长分别是,已知,.(Ⅰ)若的面积等于,求;(Ⅱ)若,求的面积.21.(12分)在如图所示的几何体中,,平面,,,,.(1)证明:平面;(2)求平面与平面所成二面角的正弦值.22.(10分)已知函数,(其中,为自然对数的底数).(1)讨论函数的单调性;(2)若分别是的极大值点和极小值点,且,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
先求导,得到函数的单调区间,函数在区间上有最大值无最小值,即导数的零点在上,计算得到答案.【题目详解】设函数在区间上有最大值无最小值即在有零点,且满足:即故答案选C【题目点拨】本题考查了函数的最大值和最小值问题,将最值问题转为二次函数的零点问题是解题的关键.2、B【解题分析】由已知及等差数列性质有,故选B.3、B【解题分析】
根据充分条件和必要条件的定义分别进行判断即可.【题目详解】命题p:∀x∈R,ax2﹣2ax+1>0,解命题p:①当a≠0时,△=4a2﹣4a=4a(a﹣1)<0,且a>0,∴解得:0<a<1,②当a=0时,不等式ax2﹣2ax+1>0在R上恒成立,∴不等式ax2﹣2ax+1>0在R上恒成立,有:0≤a<1;命题q:指数函数f(x)=ax(a>0且a≠1)为减函数,则0<a<1;所以当0≤a<1;推不出0<a<1;当0<a<1;能推出0≤a<1;故P是q的必要不充分条件.故选:B.【题目点拨】本题主要考查充分条件和必要条件的判断,考查了二次型函数恒成立的问题,考查了指数函数的单调性,属于基础题.4、C【解题分析】分析:根据函数的极值点和极值得到关于的方程组,解方程组并进行验证可得所求.详解:∵,∴.由题意得,即,解得或.当时,,故函数单调递增,无极值.不符合题意.∴.故选C.点睛:(1)导函数的零点并不一定就是函数的极值点,所以在求出导函数的零点后一定要注意分析这个零点是不是函数的极值点.(2)对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件,因此在根据函数的极值点或极值求得参数的值后需要进行验证,舍掉不符合题意的值.5、A【解题分析】分析:利用互为逆否的两个命题同真同假的原来,当对不成立时,则对也不成立,即可得到答案.详解:由题意可知,原命题成立的逆否命题成立,命题对不成立时,则对也不成立,否则当时命题成立,由已知必推得也成立,与当时命题不成立矛盾,故选A.点睛:本题主要考查了数学归纳法以及归纳法的性质,互为逆否的两个命题同真同假的性质应用,其中正确四种命题的关系是解答的关键,着重考查了推理与论证能力,属于基础题.6、C【解题分析】试题分析:,所以,因为递减数列,所以,解得。考点:等差数列7、C【解题分析】
将目标函数变形为,当取最大值,则直线纵截距最小,故当时,不满足题意;当时,画出可行域,如图所示,其中.显然不是最优解,故只能是最优解,代入目标函数得,解得,故选C.考点:线性规划.8、C【解题分析】试题分析:,当时,,单调递减,同理当时,单调递增,,显然不等式有正数解(如,(当然可以证明时,)),即存在,使,因此C错误.考点:存在性量词与全称量词,导数与函数的最值、函数的单调性.9、B【解题分析】
用反证法证明,假设同时大于,推出矛盾得出结果【题目详解】假设,,,三式相乘得,由,所以,同理,,则与矛盾,即假设不成立,所以不能同时大于,所以至少有一个不大于,故选【题目点拨】本题考查的是用反证法证明数学命题,把要证的结论进行否定,在此基础上推出矛盾,是解题的关键,同时还运用了基本不等式,本题较为综合10、D【解题分析】
根据题意,分别讨论:甲、乙两节目只有一个参加,甲、乙两节目都参加,两种情况,分别计算,再求和,即可得出结果.【题目详解】若甲、乙两节目只有一个参加,则演出顺序的种数为:,若甲、乙两节目都参加,则演出顺序的种数为:;因此不同的演出顺序的种数为.故选:D.【题目点拨】本题主要考查有限制的排列问题,以及计数原理的简单应用,熟记计数原理的概念,以及有限制的排列问题的计算方法即可,属于常考题型.11、A【解题分析】
先化简f(x)=,再求其导数,得出导函数是奇函数,排除B,D.再根据导函数的导函数小于0的x的范围,确定导函数在上单调递减,从而排除C,即可得出正确答案.【题目详解】由f(x)=,∴,它是一个奇函数,其图象关于原点对称,故排除B,D.又,当﹣<x<时,cosx>,∴<0,故函数y=在区间上单调递减,故排除C.故选A.【题目点拨】本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,属于基础题.12、B【解题分析】解:命题p:∀x>0,ln(x+1)>0,则命题p为真命题,则¬p为假命题;取a=﹣1,b=﹣2,a>b,但a2<b2,则命题q是假命题,则¬q是真命题.∴p∧q是假命题,p∧¬q是真命题,¬p∧q是假命题,¬p∧¬q是假命题.故选B.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由的值域为,,可得,由单调递减区间为,,结合函数的单调性与导数的关系可求.【题目详解】由的值域为,,可得,,,,由单调递减区间为,,可知及是的根,且,把代入可得,,解可得,或,当时,可得,当时,代入可得不符合题意,故,故答案为:.【题目点拨】本题考查二次函数的性质及函数的导数与单调性的关系的应用,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力、运算求解能力.14、【解题分析】分析:由极坐标方程可得或,化为直角坐标方程即可.详解:由极坐标方程可得或,,即或即答案为或.点睛:本题考查极坐标与直角坐标的互化,属基础题.15、【解题分析】
分别判断出,,,从而得到三者大小关系.【题目详解】,,则的大小关系用“”连接为本题正确结果:【题目点拨】本题考查指对数比较大小类的问题,解决此类问题的方法主要有两种:1.构造合适的函数模型,利用单调性判断;2.利用临界值进行区分.16、【解题分析】
分别取的中点,并连同点顺次连接,六边形就是所求的动点的轨迹,求出面积即可.【题目详解】如下图所示:分别取的中点,并连同点顺次连接,因为是三角形的中位线,所以平面,平面,同理都平行平面,所以就是所求的动点的轨迹,该正六边形的边长为,所以正六边形的面积为:.故答案为【题目点拨】本题考查了直线与平面平行的判定定理的应用,考查了数学运算能力、空间想象能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)51;(2)805;(3)见解析【解题分析】试题分析:(1)根据中位数定义列式解得中位数,(2)由正态分布得旅游费用支出在元以上的概率为,再根据频数等于总数与频率乘积得人数.(3)先确定随机变量取法,再利用组合数分别求对应概率,列表可得分布列,最后根据数学期望公式求期望.试题解析:(1)设样本的中位数为,则,解得,所得样本中位数为(百元).(2),,,旅游费用支出在元以上的概率为,,估计有位同学旅游费用支出在元以上.(3)的可能取值为,,,,,,,,∴的分布列为.18、(1);(2)1.【解题分析】
参数方程化为普通方程可得圆的普通方程为.圆的极坐标方程得,联立极坐标方程可得,,结合极坐标的几何意义可得线段的长为1.【题目详解】圆的参数方程为消去参数可得圆的普通方程为.化圆的普通方程为极坐标方程得,设,则由解得,,设,则由解得,,.【题目点拨】本题主要考查参数方程与普通方程的应用,极坐标的几何意义及其应用等知识,意在考查学生的转化能力和计算求解能力.19、【解题分析】
由对数函数的性质,我们可以得到为真时,的取值范围;根据导数的符号与函数单调性的关系及基本不等式,我们可以求出为真时的取值范围;而根据“”为真且命题“”为假,可得真假,或假真,求出这两种情况下的的取值范围再求并集即可.【题目详解】解:当为真命题时,解得当为真命题时,在上恒成立,即对恒成立.又,当且仅当时等号成立,所以,所以.因为命题“”为真命题且命题“”为假命题,所以命题与命题一个为真一个为假当真假时,有解得当假真时,有解得综上,实数的取值范围是【题目点拨】本题考查的知识点是对数函数的性质,恒成立问题,导数法确定函数的单调性,复合命题的真假,属于中档题.20、(Ⅰ),.(Ⅱ)的面积.【解题分析】试题分析:(1)由余弦定理及已知条件得,a2+b2-ab=4,…………2分又因为△ABC的面积等于,所以absinC=,得ab=4.…………4分联立方程组解得a=2,b=2.…………5分(2)由题意得sin(B+A)+sin(B-A)=4sinAcosA,即sinBcosA=2sinAcosA,…………7分当cosA=0时,A=,B=,a=,b=,…………8分当cosA≠0时,得sinB=2sinA,由正弦定理得b=2a,联立方程组解得a=,b=.…………10分所以△ABC的面积S=absinC=.…………11分考点:本题主要考查正弦定理、余弦定理的应用,三角形内角和定理,两角和差的三角函数.点评:典型题,本题在考查正弦定理、余弦定理的应用,三角形内角和定理,两角和差的三角函数的同时,考查了函数方程思想,在两道小题中,均通过建立方程组,以便求的a,b,c等.21、(1)证明见解析;(2).【解题分析】分析:(1)在中,由勾股定理可得.又平面,据此可得.利用线面垂直的判断定理可得平面.(2)(方法一)延长,相交于,连接,由题意可知二面角就是平面与平面所成二面角.取的中点为,则就是二面角的平面角.结合几何关系计算可得.(方法二)建立空间直角坐标系,计算可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 休闲农业温室大棚施工协议
- 服装行业计划生育承诺书模板
- 珠宝溯源管理珍贵价值的保障
- 营业执照保管细则
- 生物制品的冷链物流管理
- 安全生产项目招投标文件
- 临时用工协议
- 家庭聚会用车租赁协议
- 物流企业财务主管合同
- 住宅小区网络布线协议
- 期末试卷(试题)-2024-2025学年沪教版三年级上册数学
- 智慧火电厂整体解决方案
- 道德寶章·白玉蟾
- 中医医案学三医案的类型读案方法
- 制造业信息化管理系统架构规划
- GB∕T 41170.2-2021 造口辅助器具的皮肤保护用品 试验方法 第2部分:耐湿完整性和黏合强度
- 防雷装置检测质量管理手册
- 化学锚栓计算
- 燃气锅炉房和直燃机房防爆问题
- 测井曲线及代码
- 和例题讲解新人教版八年级物理下册知识点总结
评论
0/150
提交评论