版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东汕头潮阳区数学高二第二学期期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知回归方程,而试验得到一组数据是,,,则残差平方和是()A.0.01 B.0.02 C.0.03 D.0.042.已知,∈C.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件3.已知不等式x-b≥alnx(a≠0)对任意x∈(0,+∞)恒成立,则A.1-ln2 B.1-ln34.已知为虚数单位,复数,则()A. B. C. D.5.用反证法证明命题:“若,且,则a,b全为0”时,要做的假设是()A.且 B.a,b不全为0C.a,b中至少有一个为0 D.a,b中只有一个为06.在射击训练中,某战士射击了两次,设命题p是“第一次射击击中目标”,命题q是“第二次射击击中目标”,则命题“两次射击中至少有一次没有击中目标”为真命题的充要条件是().A.为真命题 B.为真命题C.为真命题 D.为真命题7.设集合,,,则图中阴影部分所表示的集合是()A. B. C. D.8.双曲线x2A.23 B.2 C.3 D.9.已知命题:,,若是真命题,则实数的取值范围为()A. B. C. D.10.已知具有线性相关关系的变量、,设其样本点为,回归直线方程为,若,(为原点),则()A. B. C. D.11.已知某几何体的三视图如图所示,其中正视图和侧视图都由半圆及矩形组成,俯视图由正方形及其内切圆组成,则该几何体的表面积等于()A. B. C. D.12.已知复数,则复数的虚部为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知为抛物线:的焦点,过且斜率为的直线交于,两点,设,则_______.14.已知,则__________.15.已知复数z=(m+1)+(m﹣2)i是纯虚数(i为虚数单位),则实数m的值为_______.16.已知X的分布列为X-101Pa设,则E(Y)的值为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数,.(1)当时,解不等式;(2)若,,求a的取值范围.18.(12分)如图,有一块半径为的半圆形空地,开发商计划征地建一个矩形游泳池和其附属设施,附属设施占地形状是等腰,其中为圆心,在圆的直径上,在圆周上.(1)设,征地面积记为,求的表达式;(2)当为何值时,征地面积最大?19.(12分)在平面直角坐标系中,已知椭圆的焦距为4,且过点.(1)求椭圆的方程(2)设椭圆的上顶点为,右焦点为,直线与椭圆交于、两点,问是否存在直线,使得为的垂心,若存在,求出直线的方程;若不存在,说明理由.20.(12分)已知函数有两个不同的零点,.(1)求的取值范围;(2)求证:.21.(12分)某校要用三辆汽车从新校区把教职工接到老校区,已知从新校区到老校区有两条公路,汽车走公路①堵车的概率为,不堵车的概率为;汽车走公路②堵车的概率为,不堵车的概率为.若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.(1)若三辆汽车中恰有一辆汽车被堵的概率为,求走公路②堵车的概率;(2)在(1)的条件下,求三辆汽车中被堵车辆的个数的分布列和数学期望.22.(10分)如图,底面,四边形是正方形,.(Ⅰ)证明:平面平面;(Ⅱ)求直线与平面所成角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
因为残差,所以残差的平方和为(5.1-5)2+(6.9-7)2+(9.1-9)2=0.03.故选C.考点:残差的有关计算.2、A【解题分析】
根据充分条件和必要条件的定义分析可得答案.【题目详解】显然“”是“”的充分条件,当时,满足,但是不满足,所以“”不是“”的必要条件,所以“”是“”的充分不必要条件.故选:A【题目点拨】本题考查了充分条件和必要条件的定义,属于基础题.3、C【解题分析】
构造函数gx=x-alnx-b,利用导数求出函数y=gx的最小值,由gxmin≥0得出【题目详解】构造函数gx=x-alnx-b,由题意知①当a<0时,∀x>0,g'x>0,此时,函数y=g当x→0时,gx→-∞,此时,②当a>0时,令g'x=当0<x<a时,g'x<0;当x>a所以,函数y=gx在x=a处取得极小值,亦即最小值,即g∴b≤a-alna,构造函数ha=1-lna-2令h'a=0,得a=2。当0<a<2时,h'a此时,函数y=ha在a=2处取得极大值,亦即最大值,即h因此,b-2a的最大值为-ln2【题目点拨】本题考查函数恒成立问题,考查了函数的单调性,训练了导数在求最值中的应用,渗透了分类讨论的思想,构造函数利用导数研究函数的最值是解决函数不等式恒成立的常用方法,考查分析问题的能力,属于难题。4、C【解题分析】
对进行化简,得到标准形式,在根据复数模长的公式,得到【题目详解】对复数进行化简所以【题目点拨】考查复数的基本运算和求复数的模长,属于简单题.5、B【解题分析】
根据反证法的定义,第一步要否定结论,即反设,可知选项.【题目详解】根据反证法的定义,做假设要否定结论,而a,b全为0的否定是a,b不全为0,故选B.【题目点拨】本题主要考查了反证法,命题的否定,属于中档题.6、A【解题分析】
由已知,先表示出命题“两次射击至少有一次没有击中目标”,在选择使该命题成立的一个充分条件.【题目详解】命题是“第一次射击击中目标”,
命题是“第二次射击击中目标”,
∴命题“两次射击至少有一次没有击中目标”,“两次射击中至少有一次没有击中目标”为真命题的充要条件:为真.故选:A.【题目点拨】本题考查的知识点是事件的表示,本题考查复合命题的真假的判断,考查充分条件的选择,属于基础题.7、A【解题分析】
阴影部分所表示的集合为:.【题目详解】由已知可得,阴影部分所表示的集合为:.故选:A.【题目点拨】本题主要考查集合的运算,属基础题.8、A【解题分析】试题分析:双曲线焦点到渐近线的距离为b,所以距离为b=23考点:双曲线与渐近线.9、A【解题分析】分析:先写出命题的否定形式,将其转化为恒成立问题,求出的值.详解:命题:,,则为,是真命题,即恒成立,的最大值为1,所以故选A.点睛:含有一个量词的命题的否定命题命题的否定10、D【解题分析】
计算出样本中心点的坐标,将该点坐标代入回归直线方程可求出实数的值.【题目详解】由题意可得,,将点的坐标代入回归直线方程得,解得,故选D.【题目点拨】本题考查利用回归直线方程求参数的值,解题时要熟悉“回归直线过样本中心点”这一结论的应用,考查运算求解能力,属于基础题.11、D【解题分析】
由三视图可知,该几何体由上下两部分组成,下面是一个底面边长为的正方形,高为的直四棱柱,上面是一个大圆与四棱柱的底面相切的半球,据此可以计算出结果.【题目详解】解:由三视图可知,该几何体由上下两部分组成,下面是一个底面边长为的正方形,高为的直四棱柱,上面是一个大圆与四棱柱的底面相切的半球.表面积.故选:D.【题目点拨】本题考查三视图求解几何体的表面积,属于基础题.12、C【解题分析】分析:由复数的乘除法法则计算出复数,再由定义可得.详解:,虚部为.故选C.点睛:本题考查的运算复数的概念,解题时根据复数运算法则化复数为简单形式,可得虚部与实部.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
直接写出直线方程,与抛物线方程联立方程组解得交点的横坐标,再由焦半径公式得出,求比值即得。【题目详解】联立,可得,解得,所以,故答案为:。【题目点拨】本题考查直线与抛物线相交问题,考查焦半径公式。解题方法是直接法,即解方程组得交点坐标。14、.【解题分析】分析:对函数的解析式求导,得到其导函数,把代入导函数中,列出关于的方程,进而得到的值.详解:因为,所以,令,得到,解得,故答案为.点睛:本题主要考查了导数的运算,运用求导法则得出函数的导函数,意在考查对基础知识掌握的熟练程度,属于基础题.15、-1.【解题分析】分析:由复数的实部等于0且虚部不等于0列式求解m的值.详解:由复数是纯虚数,得,解得.故答案为-1.点睛:本题考查了复数的基本概念,考查了复数是纯虚数的条件.16、【解题分析】
先利用频率之和为求出的值,利用分布列求出,然后利用数学期望的性质得出可得出答案.【题目详解】由随机分布列的性质可得,得,,因此,.故答案为.【题目点拨】本题考查随机分布列的性质、以及数学期望的计算与性质,灵活利用这些性质和相关公式是解题的关键,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)利用零点分段法去绝对值解不等式即可.(2)利用绝对值意义求出的最小值,使,解绝对值不等式即可.【题目详解】(1)当时,,当时,,当时,,综上所述:(2),【题目点拨】本题考查了绝对值不等式的解法,考查了分类讨论的思想,属于基础题.18、(1);(2)时,征地面积最大.【解题分析】试题分析:(1)借助题设条件运用梯形面积公式建立函数关系求解;(2)依据题设运用导数与函数的单调性的关系进行探求.试题解析:(1)连接,可得,,,,所以,.(2),令,∴(舍)或者.因为,所以时,,时,,所以当时,取得最大,故时,征地面积最大.考点:梯形面积公式、导数与函数单调性的关系等有关知识的综合运用.19、(1);(2)存在直线满足题设条件,详见解析【解题分析】
(1)由已知列出关于,,的方程组,解得,,,写出结果即可;(2)由已知可得,,.所以,因为,所以可设直线的方程为,代入椭圆方程整理,得.设,,,,由根与系数的关系写出两根之和和两根之积的表达式,再由垂心的性质列出方程求解即可.【题目详解】(1)由已知可得,解得,,,所以椭圆的方程为.(2)由已知可得,,∴.∵,∴可设直线的方程为,代入椭圆方程整理,得.设,则,∵.即∵即,∵∴或.由,得又时,直线过点,不合要求,∴,故存在直线满足题设条件.【题目点拨】本题主要考查椭圆方程的求法,直线与椭圆的位置关系应用,以及垂心的定义应用。意在考查学生的数学运算能力。20、(1);(2)见解析【解题分析】分析:(1)求出函数的导数,通过讨论的范围求出函数的单调区间,从而求出的范围即可;(2)构造函数,则可证当时,在上,有,即.将代入上面不等式中即可证明.详解:(1),若,则,在上单调递增,至多有一个零点,舍去;则必有,得在上递减,在上递增,要使有两个不同的零点,则须有.(严格来讲,还需补充两处变化趋势的说明:当时,;当时,).(2)构造函数,则.当时,,但因式的符号不容易看出,引出辅助函数,则,得在上,当时,,即,则,即,,得在上,有,即.将代入上面不等式中得,又,,在上,故,.点睛:本题考查了导数的综合应用及恒成立问题,同时考查了数形结合的思想应用,属于难题.21、(1);(2).【解题分析】
(1)三辆车是否堵车相互之间没有影响三辆汽车中恰有一辆汽车被堵,是一个独立重复试验,走公路②堵车的概率为p,不堵车的概率为1﹣p,根据独立重复试验的概率公式写出关于P的方程,解出P的值,得到结果(2)三辆汽车中被堵车辆的个数ξ,由题意知ξ可能的取值为0,1,2,3,求出相应的概率写出变量的分布列,即可求得期望.【题目详解】解:(1)三辆车是否堵车相互之间没有影响三辆汽车中恰有一辆汽车被堵,是一个独立重复试验,走公路②堵车的概率为p,不堵车的概率为1﹣p,得即3p=1,则即p的值为.(2)由题意知ξ可能的取值为0,1,2,3∴ξ的分布列为:∴Eξ【题目点拨】本题考查离散型随机变量的分布列和期望,考查相互独立事件同时发生的概率,考查利用概率知识解决实际问题.22、(1)见解析;(2)直线与平面所成角的余弦值为.【解题分析】分析:(1)先根据线面平行判定定理得平面,平面.,再根据面面平行判定定理得结论,(2)先根据条件建立空间直角坐标系,设立各点坐标,根据方程组解得平面的一个法向量,利用向
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025下半年广东省江门开平市事业单位招聘职员128人历年高频重点提升(共500题)附带答案详解
- 2025下半年四川省广元市事业单位考试招聘13人高频重点提升(共500题)附带答案详解
- 2025上海大学行政管理岗位及部分教育辅助岗位公开招聘19人高频重点提升(共500题)附带答案详解
- 2025上半年贵州遵义市事业单位招聘1985人历年高频重点提升(共500题)附带答案详解
- 2025上半年四川自贡贡井区事业单位聘用工作人员120人历年高频重点提升(共500题)附带答案详解
- 2025上半年四川泸州古蔺县事业单位招聘工作人员189人历年高频重点提升(共500题)附带答案详解
- 高科技企业总经理招聘合同样本
- 2024年大宗货物运输与智能仓储解决方案合同范本3篇
- 万能工团队招聘合同
- 羽毛球运动员晋升制度
- 软管出厂检测报告
- 新能源大学生职业生涯规划书
- 化工新材料与新技术
- 2023智慧光伏电站建设评价评分细则表
- 产业经济学-第八章-产业关联
- 华东政法大学2017-2018学年期末测试《国际法》试卷
- 智慧医疗-医疗行业智慧医院大健康解决方案V3.0
- 中小学教师师德考核鉴定表
- 端承桩负摩阻力计算
- 法律职业伦理学习通课后章节答案期末考试题库2023年
- 航班延误及解决办法教案
评论
0/150
提交评论