版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古包头市稀土高新区二中2024届数学高二第二学期期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一个容量为20的样本,则抽取管理人员()A.3人 B.4人 C.7人 D.12人2.复数z满足z=2i1-iA.1-i B.1+2i C.1+i D.-1-i3.现有8个人排成一排照相,其中甲、乙、丙三人两两不相邻的排法的种数为()A. B. C. D.4.设p:实数x,y满足(x-1)2+(y-1)2≤2,q:实数x,y满足则p是q的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件5.若复数满足,则的值是()A. B. C. D.6.若,则m等于()A.9 B.8 C.7 D.67.的常数项为(
)A.28 B.56 C.112 D.2248.过抛物线的焦点F的直线与抛物线交于A、B两点,且,为坐标原点,则的面积与的面积之比为A. B. C. D.29.设,,则A. B.C. D.10.若关于的不等式恒成立,则实数的取值范围()A. B. C. D.11.在四棱锥中,底面是正方形,顶点在底面的射影是底面的中心,且各顶点都在同一球面上,若该四棱锥的侧棱长为,体积为4,且四棱锥的高为整数,则此球的半径等于()(参考公式:)A.2 B. C.4 D.12.已知,且,则a=()A.﹣1 B.2或﹣1 C.2 D.﹣2二、填空题:本题共4小题,每小题5分,共20分。13.在△ABC中,内角A,B,C所对的边分别为a,b,c,且,b=2,若满足条件的△ABC有且仅有一个,则a的取值范围是_____.14.已知直线l的普通方程为x+y+1=0,点P是曲线上的任意一点,则点P到直线l的距离的最大值为______.15.我国南宋数学家杨辉所著的《详解九章算术》中,用图①的三角形形象地表示了二项式系数规律,俗称“杨辉三角形”.现将杨辉三角形中的奇数换成,偶数换成,得到图②所示的由数字和组成的三角形数表,由上往下数,记第行各数字的和为,如,,,,……,则______16.在平面直角坐标系xOy中,曲线y=mx+1(m>0)在x=1处的切线为l,则以点(2,-1)为圆心且与直线l三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论的单调性;(2)若恒成立,求的取值范围.18.(12分)如图,在棱长为2的正方体中,点是棱的中点,点在棱上,且满足.(Ⅰ)求证:;(Ⅱ)求平面与平面所成锐二面角的余弦值.19.(12分)男生4人和女生3人排成一排拍照留念.(1)有多少种不同的排法(结果用数值表示)?(2)要求两端都不排女生,有多少种不同的排法(结果用数值表示)?(3)求甲乙两人相邻的概率.(结果用最简分数表示)20.(12分)若数列的前项和为,且,.(1)求,,;(2)猜想数列的通项公式,并用数学归纳法加以证明.21.(12分)已知,设命题:函数在上为减函数,命题:不等式对恒成立,若为假命题,为真命题,求的取值范围.22.(10分)各项均为正数的数列的首项,前项和为,且.(1)求的通项公式:(2)若数列满足,求的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
根据分层抽样原理求出应抽取的管理人数.【题目详解】根据分层抽样原理知,应抽取管理人员的人数为:故选:B【题目点拨】本题考查了分层抽样原理应用问题,是基础题.2、D【解题分析】
直接利用复数代数形式的乘除运算化简得答案.【题目详解】z=2i1-i=2i(1+i)【题目点拨】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3、C【解题分析】先排剩下5人,再从产生的6个空格中选3个位置排甲、乙、丙三人,即,选C.4、A【解题分析】试题分析:画圆:(x–1)2+(y–1)2=2,如图所示,则(x–1)2+(y–1)2≤2表示圆及其内部,设该区域为M.画出表示的可行域,如图中阴影部分所示,设该区域为N.可知N在M内,则p是q的必要不充分条件.故选A.【考点】充要条件的判断,线性规划【名师点睛】本题考查充分性与必要性的判断问题,首先是分清条件和结论,然后考察条件推结论,结论推条件是否成立.这类问题往往与函数、三角、不等式等数学知识相结合.本题的条件与结论可以转化为平面区域的关系,利用充分性、必要性和集合的包含关系得出结论.5、C【解题分析】
先用复数除法进行化简,之后求共轭复数即可.【题目详解】因为故:故其共轭复数为:故选:C.【题目点拨】本题考查复数的除法运算,涉及共轭复数,属基础题.6、C【解题分析】分析:根据排列与组合的公式,化简得出关于的方程,解方程即可.详解:,,即,解得,故选C.点睛:本题主要考查排列公式与组合公式的应用问题,意在考查对基本公式掌握的熟练程度,解题时应熟记排列与组合的公式,属于简单题.7、C【解题分析】分析:由二项展开式的通项,即可求解展开式的常数项.详解:由题意,二项式展开式的通项为,当时,,故选C.点睛:本题主要考查了二项展开式的指定项的求解,其中熟记二项展开式的通项是解答的关键,着重考查了推理与运算能力.8、D【解题分析】
设点位于第一象限,点,并设直线的方程为,将该直线方程与抛物线方程联立,利用韦达定理得出,由抛物线的定义得出点的坐标,可得出点的纵坐标的值,最后得出的面积与的面积之比为的值.【题目详解】设点位于第一象限,点,设直线的方程为,将该直线方程与抛物线方程联立,得,,由抛物线的定义得,得,,,,可得出,,故选:D.【题目点拨】本题考查抛物线的定义、直线与抛物线的综合问题,考查韦达定理在直线与抛物线综合问题中的应用,解题的关键在于利用抛物线的定义以及韦达定理求点的坐标,并将三角形的面积比转化为高之比来处理,考查运算求解能力,属于中等题。9、B【解题分析】
分析:求出,得到的范围,进而可得结果.详解:.,即又即故选B.点睛:本题主要考查对数的运算和不等式,属于中档题.10、B【解题分析】
恒成立等价于恒成立,令,则问题转化为,对函数求导,利用导函数求其最大值,进而得到答案。【题目详解】恒成立等价于恒成立,令,则问题转化为,,令,则,所以当时,所以在单调递减且,所以在上单调递增,在上的单调递减,当时,函数取得最大值,,所以故选B【题目点拨】本题考查利用导函数解答恒成立问题,解题的关键是构造函数,属于一般题。11、B【解题分析】
如图所示,设底面正方形的中心为,正四棱锥的外接球的球心为,半径为.则在中,有,再根据体积为可求及,在中,有,解出后可得正确的选项.【题目详解】如图所示,设底面正方形的中心为,正四棱锥的外接球的球心为,半径为.设底面正方形的边长为,正四棱锥的高为,则.因为该正四棱锥的侧棱长为,所以,即……①又因为正四棱锥的体积为4,所以……②由①得,代入②得,配凑得,,即,得或.因为,所以,再将代入①中,解得,所以,所以.在中,由勾股定理,得,即,解得,所以此球的半径等于.故选B.【题目点拨】正棱锥中,棱锥的高、斜高、侧棱和底面外接圆的半径可构成四个直角三角形,它们沟通了棱锥各个几何量之间的关系,解题中注意利用它们实现不同几何量之间的联系.12、B【解题分析】
根据,可得,即可求解,得到答案.【题目详解】由题意,,且,则,解得或,故选B.【题目点拨】本题主要考查了共线向量的坐标表示及应用,其中解答中熟记共线向量的概念以及坐标表示是解答的关键,着重考查了推理与计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、a或0<a≤2【解题分析】
先根据求得,结合正弦定理及解的个数来确定a的取值范围.【题目详解】因为,所以,由于在三角形中,所以,即,因为,所以.由正弦定理可得,因为满足条件的△ABC有且仅有一个,所以或者,所以或者.【题目点拨】本题主要考查利用三角形解的个数求解参数的范围,三角形解的个数一般可以利用几何法或者代数法来求解,侧重考查逻辑推理的核心素养.14、【解题分析】
根据曲线的参数方程,设,再由点到直线的距离以及三角函数的性质,即可求解.【题目详解】由题意,设,则到直线的距离,故答案为.【题目点拨】本题主要考查了曲线的参数方程的应用,其中解答中根据曲线的参数方程设出点的坐标,利用点到直线的距离公式和三角函数的性质求解是解答的关键,着重考查了推理与运算能力,属于基础题.15、64.【解题分析】
将杨辉三角中的奇数换成1,偶数换成0,可得第1次全行的数都为1的是第2行,第2次全行的数都为1的是第4行,…,由此可知全奇数的行出现在2n的行数,即第n次全行的数都为1的是第2n行.126=27﹣2,故可得.所以第128行全是1,那么第127行就是101010…101,第126行就是11001100…110011,问题得以解决.【题目详解】解:由题意,将杨辉三角中的奇数换成1,偶数换成0,可得第1次全行的数都为1的是第2行,第2次全行的数都为1的是第4行,…,由此可知全奇数的行出现在2n的行数,即第n次全行的数都为1的是第2n行.126=27﹣2,故可得第128行全是1,那么第127行就是101010…101,第126行就是11001100…110011,11又126÷4=31+2,∴S126=2×31+2=64,故答案为:64点睛:本题考查归纳推理,属中档题.16、(x-2)【解题分析】
由题意先求出切线为l的直线方程,可得直线恒过定点,在满足题意与直线l相切的所有圆中计算出圆半径,即得圆的标准方程【题目详解】因为y=mx+1,所以当x=1时,y=m2,y'=-m则l的方程为y-m2=-所以直线l恒过定点A(3,0).又直线l与以点C(2,-1)为圆心的圆相切,则圆的半径r等于圆心C到直线l的距离d,又当AC⊥l时,d最大,所以rmax故所求圆的标准方程为(x-2)2【题目点拨】本题考查了求与直线相切的圆的标准方程,需先求出切线方程,解题关键是理解题意中半径最大的圆,即圆心与定点之间的距离,需要具有转化的能力三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解题分析】
(1)求出,分或两种情况讨论(2)由,得恒成立,则恒成立,然后利用导数求出右边的最大值即可【题目详解】解:(1)易知,,(i)当时对任意的恒成立;(ⅱ)当时,若,得若,得,综上,当时在上单调递增;当时,在上单调递增,在上单调递减.(2)由,得恒成立,则恒成立,令,,则令,,则,∴在上单调递减,又∵,∴在上,即;在上,即,∴在上单调递增,在上单调递减,∴,故,即的取值范围为.【题目点拨】恒成立问题首选的方法是通过分离变量,转化为最值问题.18、(Ⅰ)详见解析;(Ⅱ).【解题分析】
(Ⅰ)由正方体的性质得出平面,再由直线与平面垂直的性质可证明出;(Ⅱ)以为原点,,,分别为,,轴建立空间直角坐标系,计算出平面和平面的法向量,利用向量法求出这两个平面所成锐二面角的余弦值.【题目详解】(Ⅰ)在正方体中,平面,平面,∴;(Ⅱ)如图,以为原点,,,分别为,,轴建立空间直角坐标系,则,,,,∴,,,设为平面的一个法向量,则,即,令,可得,∵平面,∴为平面的一个法向量,∴,∴平面与平面所成锐二面角的余弦值为.【题目点拨】本题考查直线与直线垂直的证明,考查利用空间向量法计算二面角,解题的关键就是计算出两个平面的法向量,利用空间向量法来进行计算,考查计算能力与逻辑推理能力,属于中等题.19、(1)5040;(2)1440;(3).【解题分析】
(1)根据排列的定义及排列数公式,即可求得总的排列方法.(2)根据分步计数原理,先把两端的位置安排男生,再安排中间5个位置即可.(3)根据捆绑法计算甲乙两人相邻的排列方法,除以总数即可求得甲乙两人相邻的概率.【题目详解】(1)男生4人和女生3人排成一排则总的安排方法为种(2)因为两端不安排女生,所以先把两端安排男生,共有种剩余5人安排在中间位置,总的安排方法为种根据分步计数原理可知两端不安排女生的方法共有种(3)甲乙两人相邻,两个人的排列为把甲乙看成一个整体,和剩余5人一起排列,总的方法为因为男生4人和女生3人排成一排总的安排方法为种所以甲乙两人相邻的概率为【题目点拨】本题考查了排列组合的综合应用,对特殊位置要求及相邻问题的求法,属于基础题.20、(1);(2),证明见解析【解题分析】
(1)由已知条件分别取,能依次求出,,的值;(2)猜想.证明当是否成立,假设时,猜想成立,即:,证明当也成立,可得证明【题目详解】解:(1)由题意:,,当时,可得,可得同理当时:,可得当时:,可得(2)猜想.证明如下:①时,符合猜想,所以时,猜想成立.②假设时,猜想成立,即:.(),,两式作差有:,又,所以对恒成立.则时,,所以时,猜想成立.综合①②可知,对恒成立.【题目点拨】本题主要考查数列的递推式及通项公式的应用,数学归纳法的证明方法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 互联网服务备案管理规则
- 犹太教堂防水施工墙面协议
- 研发经理解除聘用合同分析
- 图书馆环境卫生工招聘合同
- 2024年网络游戏运营合同范本
- 2024年物联网技术应用开发与合作合同
- 地下排水桩基夯扩桩施工合同
- 2025年酒水新品研发与技术合作合同2篇
- 2025版智能家居系统解决方案供货与安装合同
- 2024年瑜伽馆学员培训协议3篇
- 脑卒中偏瘫患者早期康复护理现状(一)
- 模特的基础训练
- 急救技术-洗胃术 (2)
- 药品招商流程
- 混凝土配合比检测报告
- 100道递等式计算(能巧算得要巧算)
- 【2019年整理】园林景观设计费取费标准
- 完整word版,ETS5使用教程
- 《血流动力学监测》PPT课件.ppt
- 2018年秋季人教版十一册数学第7、8单元测试卷
- 学生作业提交与批阅系统的设计与实现探讨
评论
0/150
提交评论