版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届黑龙江省齐齐哈尔市第十一中学数学高二第二学期期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列值等于1的积分是()A. B. C. D.2.为了得到函数的图象,只需把函数的图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度3.函数的图象在点处的切线方程是,若,则()A. B. C. D.4.一物体做直线运动,其位移s(单位:m)与时间t(单位:s)的关系是s=5t-t2,则该物体在A.-1m/s B.1m5.对于问题:“已知x,y,z是互不相同的正数,求证:三个数x+1A.x+1z,y+1C.x+1z,y+16.已知双曲线的两个焦点分别为,过右焦点作实轴的垂线交双曲线于,两点,若是直角三角形,则双曲线的离心率为()A. B. C. D.7.在的展开式中的系数是()A.40 B.80 C.20 D.108.复数(为虚数单位)的虚部是().A. B. C. D.9.已知空间不重合的三条直线、、及一个平面,下列命题中的假命题是().A.若,,则 B.若,,则C.若,,则 D.若,,则10.点的直角坐标化成极坐标为()A. B. C. D.11.某校开设10门课程供学生选修,其中、、三门由于上课时间相同,至多选一门,学校规定每位学生选修三门,则每位学生不同的选修方案种数是()A.70 B.98 C.108 D.12012.在等比数列an中,a1=4,公比为q,前n项和为Sn,若数列A.2B.-2C.3D.-3二、填空题:本题共4小题,每小题5分,共20分。13.已知函数是定义在上的奇函数,且函数的图象关于直线对称,当时,,则__________.14.已知正三棱锥底面边长为,侧棱长为,则它的侧面与底面所成二面角的余弦值为________.15.(2016·开封联考)如图所示,由曲线y=x2,直线x=a,x=a+1(a>0)及x轴围成的曲边梯形的面积介于相应小矩形与大矩形的面积之间,即.运用类比推理,若对∀n∈N*,恒成立,则实数A=________.16.将参数方程,(,为参数)化为普通方程______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列的前项和为,已知.(1)求数列的通项公式;(2)令,求数列的前项和.18.(12分)设函数.(1)当时,求关于的不等式的解集;(2)若在上恒成立,求的取值范围.19.(12分)某公司的一次招聘中,应聘者都要经过三个独立项目,,的测试,如果通过两个或三个项目的测试即可被录用.若甲、乙、丙三人通过,,每个项目测试的概率都是.(1)求甲恰好通过两个项目测试的概率;(2)设甲、乙、丙三人中被录用的人数为,求的概率分布和数学期望.20.(12分)已知函数.(1)若在定义域上不单调,求的取值范围;(2)设分别是的极大值和极小值,且,求的取值范围.21.(12分)如图,正方形的边长为2,点,分别为,的中点,将,分别沿,折起,使,两点重合于点,连接.(Ⅰ)求证:平面;(Ⅱ)求与平面所成角的余弦值.22.(10分)已知函数f(x)=4ax-a(1)当a=1时,求曲线f(x)在点(1,(2)若函数f(x)在其定义域内为增函数,求实数a的取值范围;(3)设函数g(x)=6ex,若在区间[1,e]上至少存在一点x0
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
分别求出被积函数的原函数,然后根据定积分的定义分别计算看其值是否为1即可.【题目详解】解:选项A,xdxx2,不满足题意;选项B,(x+1)dx=(x2+x)1,不满足题意;选项C,1dx=x1﹣0=1,满足题意;选项D,dxx0,不满足题意;故选C.考点:定积分及运算.2、D【解题分析】
通过变形,通过“左加右减”即可得到答案.【题目详解】根据题意,故只需把函数的图象上所有的点向右平移个单位长度可得到函数的图象,故答案为D.【题目点拨】本题主要考查三角函数的平移变换,难度不大.3、D【解题分析】分析:先求出和,再求即得.详解:由题得因为函数的图象在点处的切线方程是,所以所以故答案为:D.点睛:(1)本题主要考查求导和导数的几何意义,意在考查学生对该知识的掌握水平.(2)函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是4、A【解题分析】
先对s求导,然后将t=3代入导数式,可得出该物体在t=3s时的瞬时速度。【题目详解】对s=5t-t2求导,得s'因此,该物体在t=3s时的瞬时速度为-1m/s,故选:A。【题目点拨】本题考查瞬时速度的概念,考查导数与瞬时变化率之间的关系,考查计算能力,属于基础题。5、C【解题分析】
找到要证命题的否定即得解.【题目详解】“已知x,y,z是互不相同的正数,求证:三个数x+1z,y+1x,而它的反面为:三个数x+1z,y+1x,故选:C.【题目点拨】本题主要考查用反证法证明数学命题,命题的否定,属于基础题.6、B【解题分析】分析:由题意结合双曲线的结合性质整理计算即可求得最终结果.详解:由双曲线的对称性可知:,则为等腰直角三角形,故,由双曲线的通径公式可得:,据此可知:,即,整理可得:,结合解方程可得双曲线的离心率为:.本题选择B选项.点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).7、A【解题分析】
把按照二项式定理展开,可得的展开式中的系数.【题目详解】解:由的展开式中,,令,可得,可得的展开式中的系数是:,故选:A.【题目点拨】本题主要考查二项式展开式及二项式系数的性质,属于基础题型.8、A【解题分析】
利用复数的除法法则将复数表示为一般形式,可得出复数的虚部.【题目详解】,因此,该复数的虚部为,故选A.【题目点拨】本题考查复数的除法,考查复数的虚部,对于复数问题的求解,一般利用复数的四则运算法则将复数表示为一般形式,明确复数的实部与虚部进行求解,考查计算能力,属于基础题.9、B【解题分析】
根据线线、线面有关定理对选项逐一分析,由此确定是假命题的选项.【题目详解】对于A选项,根据平行公理可知,A选项正确.对于B选项,两条直线平行与同一个平面,这两条直线可以相交、平行或异面,故B选项是假命题.对于C选项,由于,,根据空间角的定义可知,,C选项正确.对于D选项,由于,所以平行于平面内一条直线,而,所以,所以,即D选项正确.故选:B.【题目点拨】本小题主要考查空间线线、线面有关命题真假性的判断,属于基础题.10、D【解题分析】
分别求得极径和极角,即可将直角坐标化为极坐标.【题目详解】由点M的直角坐标可得:,点M位于第二象限,且,故,则将点的直角坐标化成极坐标为.本题选择D选项.【题目点拨】本题主要考查直角坐标化为极坐标的方法,意在考查学生的转化能力和计算求解能力.11、B【解题分析】根据题意,分2种情况讨论:①、从A,B,C三门中选出1门,其余7门中选出2门,有种选法,②、从除A,B,C三门之外的7门中选出3门,有种选法;故不同的选法有63+35=98种;故选:B.点睛:(1)解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解.12、C【解题分析】由题意,得S1+2=4,S2+2=4q+6,S3+2=4q2+4q+6点睛:本题若直接套用等比数列的求和公式进行求解,一是计算量较大,二是往往忽视“q=1”的特殊情况,而采用数列的前三项进行求解,大大降低了计算量,也节省的时间,这是处理选择题或填空题常用的方法.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:详解:函数是定义在上的奇函数,故函数)关于(2,0)中心对称,函数的图象关于直线对称,得到函数的周期为:4,故答案为:0.点睛:这个题目考查了函数的对称性和周期性,对于抽象函数,且要求函数值的题目,一般是研究函数的单调性和奇偶性,通过这些性质将要求的函数值转化为已知表达式的区间上,将转化后的自变量代入解析式即可.14、【解题分析】
先做出二面角的平面角,再运用余弦定理求得二面角的余弦值.【题目详解】取正三棱锥的底边的中点,连接和,则在底面正中,,且边长为,所以,在等腰中,边长为,所以且,所以就是侧面与底面所成二面角的平面角,所以在中,,故得解.【题目点拨】本题考查二面角,属于基础题.15、【解题分析】令,依据类比推理可得A1=dx=ln(n+1)-lnn,A2=dx=ln(n+2)-ln(n+1),…,An=dx=ln(2n)-ln(2n-1),所以A=A1+A2+…+An=ln(n+1)-lnn+ln(n+2)-ln(n+1)+…+ln(2n)-ln(2n-1)=ln(2n)-lnn=ln2.16、【解题分析】
可将左右同乘2,再消参即可求解普通方程【题目详解】,结合可得故答案为:【题目点拨】本题考查参数方程转化成普通方程,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】分析:(1)由求得,由时,可得的递推式,得其为等比数列,从而易得通项公式;(2)根据(1)的结论,数列的前项和可用裂项相消法求得.详解:(1)∵①当时,,∴当时,②由①-②得:∴∴是以为首项,公比为的等比数列∴(2)∵∴点睛:设数列是等差数列,是等比数列,则数列,,的前项和求法分别为分组求和法,错位相减法,裂项相消法.18、(1)(2)【解题分析】
(1)根据绝对值的意义,取到绝对值号,得到分段函数,进而可求解不等式的解集;(2)因为,得,再利用绝对值的定义,去掉绝对值号,即可求解。【题目详解】(1)因为,所以的解集为.(2)因为,所以,即,则,所以.【题目点拨】本题主要考查了绝对值不等式问题,对于含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.19、(1);(2)答案见解析.【解题分析】分析:(1)利用二项分布计算甲恰好有2次发生的概率;(2)由每人被录用的概率值,求出随机变量X的概率分布,计算数学期望.详解:(1)甲恰好通过两个项目测试的概率为;(2)因为每人可被录用的概率为,所以,,,;故随机变量X的概率分布表为:X0123P所以,X的数学期望为.点睛:解离散型随机变量的期望应用问题的方法(1)求离散型随机变量的期望关键是确定随机变量的所有可能值,写出随机变量的分布列,正确运用期望公式进行计算.(2)要注意观察随机变量的概率分布特征,若属二项分布的,可用二项分布的期望公式计算,则更为简单.20、(1);(2).【解题分析】分析:(1)利用导数法求出函数单调递增或单调递减时,参数的取值范围为,则可知函数在定义域上不单调时,的取值范围为;(2)易知,设的两个根为,并表示出,则,令,则,再利用导数法求的取值范围.详解:由已知,(1)①若在定义域上单调递增,则,即在上恒成立,而,所以;②若在定义域上单调递减,则,即在上恒成立,而,所以.因为在定义域上不单调,所以,即.(2)由(1)知,欲使在有极大值和极小值,必须.又,所以.令的两根分别为,,即的两根分别为,,于是.不妨设,则在上单调递增,在上单调递减,在上单调递增,所以,,所以.令,于是,,由,得,又,所以.因为,所以在上为减函数,所以.点睛:导数问题一直是高考数学的重点内容也是难点内容,要注意研究函数的单调性,有时需要构造相关函数,将问题转化为求函数的值域问题,本题中的第一问,采用了“正难则反”的策略,简化了解题,在解决第二问换元时,要注意表明新元的取值范围.21、(Ⅰ)详见解析;(Ⅱ).【解题分析】
(Ⅰ)由已知易证平面,可得,又由可得证;(Ⅱ)法一:在内过点作于点,可证为所求线面角;法二:以点为坐标原点,建立空间直角坐标系,用空间向量方法求解.【题目详解】解:(Ⅰ)∵,,∴平面,又平面,∴.由已知可得,∴平面.(Ⅱ)法一:在内过点作于点.由(Ⅰ)知平面平面,平面平面,则即为与平面所成角.设与交于点,连接,则,.又平面,平面,,在,,.∴,即与平面所成角的余弦值.法二:以点为坐标原点,如图建立空间直角坐标系.则,,,,设,则,解得,于是.又平面的一个法向量为,故.因此,与平面所成角的余弦值.【题目点拨】本题考查了线面垂直的证明和线面角的求法,考查了直观想象能力和数学计算能力,属于中档题.22、(1)y=3x(2)[12【解题分析】
(1)求出f(x)的导数,求出f′(1),f(1),代入切线方程即可;(2)求出函数的导数,通过讨论a的范围结合二次函数的性质得到函数的单调性,从而求出a的具体范围;(3)构造函数ϕ(x)=f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公路运输安全与事故预防考核试卷
- 专业技术培训的成功秘诀考核试卷
- 制糖企业可持续发展计划考核试卷
- 水产品质量与安全控制体系落地实施方案报告总结考核试卷
- 智能体育场馆物联网的体验升级考核试卷
- DB11T 494.1-2013 人力资源服务规范 第1部分:通则
- DB11∕T 3019-2018 高速公路收费站服务规范
- gpt做课件教学课件
- 餐厅新进员工岗前培训
- 孵化小鸡课件教学课件
- 降低住院患者跌倒发生率
- 城市道路路面PCI计算(2016版养护规范)
- 数字信号处理大作业
- 公路管理工作常见五大诉讼风险及防范
- 公安局市人大代表履职情况报告
- 课题结题成果鉴定书.doc
- 大江公司高浓度磷复肥工程可行性研究报告(优秀可研报告)
- 修旧利废实施方案
- 带轴间差速器地分动器特性分析报告材料
- 急诊科护理质量控制措施
- [复习考试资料大全]事业单位考试题库:乡村振兴试题及答案
评论
0/150
提交评论