版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届甘肃省天水市甘谷县数学高二第二学期期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,则下图中阴影部分所表示的集合为()A. B. C. D.2.设是定义在上恒不为零的函数,对任意实数,都有,若,,则数列的前项和的取值范围是()A. B. C. D.3.已知双曲线x2a2-yA.x212-y284.的展开式中各项系数之和为()A. B.16 C.1 D.05.若函数在上是增函数,则实数的取值范围是()A. B. C. D.6.下列函数中,其图像与函数的图像关于直线对称的是A. B. C. D.7.已知,是双曲线的左、右焦点,点关于渐近线的对称点恰好落在以为圆心,为半径的圆上,则该双曲线的离心率为()A. B. C.2 D.38.设随机变量服从正态分布,若,则
=A. B. C. D.9.在极坐标系中,曲线的极坐标方程为,曲线的极坐标方程为。若射线与曲线和曲线分别交于两点(除极点外),则等于()A. B. C.1 D.10.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg11.已知全集U=R,集合A=xxx+2<0,A.-2,1 B.-1,0C.(-2,-1]∪[0,1] D.(0,1)12.函数在定义域内可导,的图象如图所示,则导函数可能为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.将一根长为1米的木条锯成两段,分别作三角形ABC的两边AB,AC,且.则当AC最短时,第三边BC的长为________米.14.若函数是偶函数,且在上是增函数,若,则满足的实数的取值范围是__________.15.已知复数,,若为纯虚数,则_____.16.若定义在上的函数,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)食品安全一直是人们关心和重视的问题,学校的食品安全更是社会关注的焦点.某中学为了加强食品安全教育,随机询问了36名不同性别的中学生在购买食品时是否看保质期,得到如下“性别”与“是否看保质期”的列联表:男女总计看保质期822不看保持期414总计(1)请将列联表填写完整,并根据所填的列联表判断,能否有的把握认为“性别”与“是否看保质期”有关?(2)从被询问的14名不看保质期的中学生中,随机抽取3名,求抽到女生人数的分布列和数学期望.附:,().临界值表:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82818.(12分)已如变换对应的变换矩阵是,变换对应的变换矩阵是.(Ⅰ)若直线先经过变换,再经过变换后所得曲线为,求曲线的方程;(Ⅱ)求矩阵的特征值与特征向量.19.(12分)选修4-5:不等式选讲已知函数.(1)求不等式的解集;(3)若函数的最小值不小于的最小值,求的取值范围.20.(12分)已知函数.(1)若曲线在处切线的斜率为,求此切线方程;(2)若有两个极值点,求的取值范围,并证明:.21.(12分)已知函数,.(1)当时,求函数的单调区间;(2)讨论函数的零点个数.22.(10分)已知抛物线的焦点为,准线为,点,在上的射影为,且是边长为的正三角形.(1)求;(2)过点作两条相互垂直的直线与交于两点,与交于两点,设的面积为的面积为(为坐标原点),求的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】分析:根据韦恩图可知阴影部分表示的集合为,首先利用偶次根式满足的条件,求得集合B,根据集合的运算求得结果即可.详解:根据偶次根式有意义,可得,即,解得,即,而题中阴影部分对应的集合为,所以,故选B.点睛:该题考查的是有关集合的运算的问题,在求解的过程中,首先需要明确偶次根式有意义的条件,从而求得集合B,再者应用韦恩图中的阴影部分表示的是,再利用集合的运算法则求得结果.2、A【解题分析】
根据f(x)•f(y)=f(x+y),令x=n,y=1,可得数列{an}是以为首项,以为等比的等比数列,进而可以求得Sn,进而Sn的取值范围.【题目详解】∵对任意x,y∈R,都有f(x)•f(y)=f(x+y),∴令x=n,y=1,得f(n)•f(1)=f(n+1),即f(1),∴数列{an}是以为首项,以为等比的等比数列,∴an=f(n)=()n,∴Sn1﹣()n∈[,1).故选:C.【题目点拨】本题主要考查了等比数列的求和问题,解题的关键是根据对任意x,y∈R,都有f(x)•f(y)=f(x+y)得到数列{an}是等比数列,属中档题.3、D【解题分析】试题分析:因为双曲线x2a2-y2b2=1(a>0,b>0)的离心率为62,所以ca考点:双曲线的性质.4、C【解题分析】
令,由此求得二项式的展开式中各项系数之和.【题目详解】令,得各项系数之和为.故选:C【题目点拨】本小题主要考查二项式展开式各项系数之和的求法,属于基础题.5、D【解题分析】
由题意得在上恒成立,利用分离参数思想即可得出结果.【题目详解】∵,∴,又∵函数在上是增函数,∴在恒成立,即恒成立,可得,故选D.【题目点拨】本题主要考查了已知函数的单调性求参数的取值范围,属于中档题.6、B【解题分析】分析:确定函数过定点(1,0)关于x=1对称点,代入选项验证即可.详解:函数过定点(1,0),(1,0)关于x=1对称的点还是(1,0),只有过此点.故选项B正确点睛:本题主要考查函数的对称性和函数的图像,属于中档题.7、C【解题分析】
设点关于渐近线的对称点为点,该渐近线与交点为,由平面几何的性质可得为等边三角形,设,则有;又,可得,代入离心率即可得出结果.【题目详解】设点关于渐近线的对称点为点,该渐近线与交点为,所以为线段的中垂线,故,所以为等边三角形,设,则有;又,可得,所以离心率.故选:C【题目点拨】本题主要考查了双曲线的几何性质以及渐近线和离心率,考查了学生逻辑推理与运算求解能力.8、B【解题分析】分析:根据正态分布图像可知,故它们中点即为对称轴.详解:由题可得:,故对称轴为故选B.点睛:考查正态分布的基本量和图像性质,属于基础题.9、A【解题分析】
把分别代入和,求得的极经,进而求得,得到答案.【题目详解】由题意,把代入,可得,把代入,可得,结合图象,可得,故选A.【题目点拨】本题主要考查了简单的极坐标方程的应用,以及数形结合法的解题思想方法,着重考查了推理与运算能力,属于基础题.10、D【解题分析】根据y与x的线性回归方程为y=0.85x﹣85.71,则=0.85>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加1cm,预测其体重约增加0.85kg,C正确;该大学某女生身高为170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误.故选D.11、C【解题分析】
先弄清楚阴影部分集合表示的含义,并解出集合A、B,结合新定义求出阴影部分所表示的集合。【题目详解】由题意知,阴影部分区域表示的集合S=x集合A=xxx+2A∪B=-2,1,A∩B=因此,阴影部分区域所表示的集合为S=-2,-1∪0,1【题目点拨】本题考查集合的运算、集合的表示法以及集合中的新定义,考查二次不等式以及对数不等式的解法,解题的关键就是要弄清楚Venn图表示的新集合的意义,在计算无限集之间的运算时,可充分利用数轴来理解,考查逻辑推理能力与运算求解能力,属于中等题。12、D【解题分析】
根据函数的单调性判断出导函数函数值的符号,然后结合所给的四个选项进行分析、判断后可得正确的结论.【题目详解】由图象可知,函数在时是增函数,因此其导函数在时,有(即函数的图象在轴上方),因此排除A、C.从原函数图象上可以看出在区间上原函数是增函数,所以,在区间上原函数是减函数,所以;在区间上原函数是增函数,所以.所以可排除C.故选D.【题目点拨】解题时注意导函数的符号与函数单调性之间的关系,即函数递增(减)时导函数的符号大(小)于零,由此可判断出导函数图象与x轴的相对位置,从而得到导函数图象的大体形状.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
设出边长,利用余弦定理可找出关系式,化为二次函数用配方法即可得到最小值.【题目详解】设,则,设,通过余弦定理可得:,即,化简整理得,要使AC最短,则使AB最长,故当时,AB最长,故答案为.【题目点拨】本题主要考查函数的实际应用,意在考查学生的分析能力及计算能力,难度不大.14、【解题分析】
根据偶函数性质得出在上是减函数,由此可得不等式.【题目详解】∵是偶函数,且在上是增函数,,∴在上是减函数,.又,∴,解得且.故答案为.【题目点拨】本题考查函数的奇偶性与单调性,由奇偶性和单调性结合起来解函数不等式,这种问题一类针对偶函数,一类针对奇函数,它们有固定的解题格式.如偶函数在上是增函数,可转化为,奇函数在上是增函数,首先把不等式转化为再转化为.15、【解题分析】
化简,令其实部为0,可得结果.【题目详解】因为,且为纯虚数,所以,即.【题目点拨】本题主要考查复数的除法运算以及复数为纯虚数的等价条件.16、【解题分析】由定积分的几何意义可得,是以原点为圆心,以为半径的圆的面积的一半,,,故答案为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)有的把握认为“性别”与“是否看食品保质期”有关系(1)分布列见解析,【解题分析】(分析:1)将列联表填写完整,求出,然后判断性别与是否看保质期之间是否有关系.
(1)判断的取值为0,1,1.3,求出概率,然后得到分布列,求解期望即可.详解:(1)填表如下:男女总计看保质期81411不看保质期10414总计181836根据列联表中的数据,可得.故有的把握认为“性别”与“是否看食品保质期”有关系.(1)由题意可知,的所有可能取值为,,,,,所以.点睛:本题考查离散型随机变量的分布列期望的求法,对立检验的应用,考查计算能力.18、(Ⅰ);(Ⅱ)详见解析.【解题分析】
(Ⅰ)先求出变换矩阵,然后设曲线上一点,列出方程即可得到方程;(Ⅱ)先利用多项式求出特征根,然后求出特征向量.【题目详解】解:(Ⅰ),在曲线上任取一点,在变换的作用下得到点,则即,整理得,则即代入中得.(Ⅱ)矩阵的特征多项式为,令得或,①当时,由,得即令,则.所以矩阵的一个特征向量为;②当时,由,得,即令,则.所以矩阵的一个特征向量.【题目点拨】本题主要考查矩阵变换,特征值和特征向量的相关运算.意在考查学生的分析能力和计算能力,难度中等.19、(1).(2).【解题分析】分析:(1)分段讨论即可;(2)分别求出和的最小值,解出即可.详解:(1)由,得,∴或或解得,故不等式的解集为.(2)∵,∴的最小值为.∵,∴,则或,解得.点睛:求解与绝对值不等式有关的最值问题的方法求解含参数的不等式存在性问题需要过两关:第一关是转化关,先把存在性问题转化为求最值问题;不等式的解集为R是指不等式的恒成立问题,而不等式的解集为∅的对立面也是不等式的恒成立问题,此两类问题都可转化为最值问题,即f(x)<a恒成立⇔a>f(x)max,f(x)>a恒成立⇔a<f(x)min.第二关是求最值关,求含绝对值的函数最值时,常用的方法有三种:①利用绝对值的几何意义;②利用绝对值三角不等式,即|a|+|b|≥|a±b|≥||a|-|b||;③利用零点分区间法.20、(1);(2),证明见解析.【解题分析】
(1)在处切线的斜率为,即,得出,计算f(e),即可出结论(2)①有两个极值点得=0有两个不同的根,即有两个不同的根,令,利用导数求其范围,则实数a的范围可求;有两个极值点,利用在(e,+∞)递减,,即可证明【题目详解】(1)∵,∴,解得,∴,故切点为,所以曲线在处的切线方程为.(2),令=0,得.令,则,且当时,;当时,;时,.令,得,且当时,;当时,.故在递增,在递减,所以.所以当时,有一个极值点;时,有两个极值点;当时,没有极值点.综上,的取值范围是.(方法不同,酌情给分)因为是的两个极值点,所以即…①不妨设,则,,因为在递减,且,所以,即…②.由①可得,即,由①,②得,所以.【题目点拨】本题主要考察导数在切线,极值方向的应用,主要理清导数的几何意义,导数和极值之间的关系进行转化,在做题的过程中,适当选取参变分离有时候能简化分类讨论的必要.21、(1)的单调递增区间为,的单调递减区间为.(2)或,函数有个零点,或时,函数有两个零点.【解题分析】分析:(1)求出,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(2)对分三种情况讨论,利用导数研究函数的单调性,利用单调性结合函数图象以及零点存在定理可得,或,函数有个零点,或时,函数有两个零点.详解:(1)当时,令,得,当时,,当时,,所以的单调递增区间为,的单调递减区间为(2)当时,的定义域为,当时,即时,在上单调递增,易知所以函数有个零点当时,即时,令,得,,且,所以在,上单调递增,在上单调递减由,知,所以,则,因为,所以所以所以当时,函数有个零点当时,的定义域为令,得,,所以在上单调递减,在上单调递增,令,,所以在上单调递减,在上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度品牌授权合同:某中国品牌管理与外国授权商之间的品牌授权使用协议2篇
- 软装搭配师2024年度服务合同3篇
- 全新2024版建设工程施工监理合同3篇
- 二零二四年度金融服务合同(标的:某企业000万元贷款服务)2篇
- 2024年度日化品生产线技术改造合同2篇
- 二零二四年度工程设备采购与租赁合同2篇
- 解除房屋租赁合同协议书
- 2024年度技术开发合同:某科技公司与某汽车制造商之间的技术开发2篇
- 二零二四年度艺术品展览与借阅合同
- 2024年度租赁合同:高端设备租赁与维护3篇
- GB/T 44762-2024氯化镧
- 商场百货陈列培训
- 建筑工程质量通病与预防措施
- 第21课《蝉》课件-2024-2025学年统编版语文八年级上册
- 2024年四川甘孜州综合(卫生)事业单位招聘专业人才133人历年管理单位遴选500模拟题附带答案详解
- 2024秋期国家开放大学专本科《教育学》一平台在线形考(形考任务1至4及大作业)试题及答案
- 《药品经营质量管理规范》
- 四川省情知识考试复习题库(含答案)
- 保洁人员安全作业培训
- 高中家长会主题班会课件
- 2023年四川天府银行招聘考试真题
评论
0/150
提交评论