2024届上海市崇明县高二数学第二学期期末复习检测模拟试题含解析_第1页
2024届上海市崇明县高二数学第二学期期末复习检测模拟试题含解析_第2页
2024届上海市崇明县高二数学第二学期期末复习检测模拟试题含解析_第3页
2024届上海市崇明县高二数学第二学期期末复习检测模拟试题含解析_第4页
2024届上海市崇明县高二数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届上海市崇明县高二数学第二学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.如图是2018年9月到2019年2月这半年中,某个关键词的搜索指数变化的走势图.根据该走势图,下列结论正确的是()A.这半年中,网民对该关键词相关的信息关注度呈周期性变化B.这半年中,网民对该关键词相关的信息关注度不断减弱C.从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差D.从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值2.若对任意的,不等式恒成立,则的取值范围是()A. B. C. D.3.已知平面α与平面β相交,a是α内的一条直线,则()A.在β内必存在与a平行的直线 B.在β内必存在与a垂直的直线C.在β内必不存在与a平行的直线 D.在β内不一定存在与a垂直的直线4.已知A,B为平面内两定点,过该平面内动点M作直线AB的垂线,垂足为.若,其中为常数,则动点M的轨迹不可能是()A.圆 B.椭圆 C.抛物线 D.双曲线5.直线与抛物线交于,两点,若,则弦的中点到直线的距离等于()A. B. C.4 D.26.演绎推理“因为时,是的极值点,而对于函数,,所以0是函数的极值点.”所得结论错误的原因是()A.大前提错误 B.小前提错误 C.推理形式错误 D.全不正确7.函数的图象沿轴向右平移个单位后,得到为偶函数,则的最小值为()A. B. C. D.8.方程的实根所在的区间为()A. B. C. D.9.已知10件产品中,有7件合格品,3件次品,若从中任意抽取5件产品进行检查,则抽取的5件产品中恰好有2件次品的抽法有()A.种 B.种 C.种 D.种10.设,则的定义域为().A.(-4,0)∪(0,4)B.(-4,-1)∪(1,4)C.(-2,-1)∪(1,2)D.(-4,-2)∪(2,4)11.已知,则的值为()A. B. C. D.12.已知PA,PB是圆C:的两条切线(A,B是切点),其中P是直线上的动点,那么四边形PACB的面积的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若对任意,都有恒成立,则实数的取值范围是_______________.14.已知,且,则____________.15.若,,满足约束条件,则的最小值为__________.16.对于定义域为的函数,若满足①;②当,且时,都有;③当,且时,都有,则称为“偏对称函数”.现给出四个函数:①;②;③;④.则其中是“偏对称函数”的函数序号为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某学校为了丰富学生的课余生活,以班级为单位组织学生开展古诗词背诵比赛,随机抽取一首,背诵正确加10分,背诵错误减10分,且背诵结果只有“正确”和“错误”两种.其中某班级学生背诵正确的概率,记该班级完成首背诵后的总得分为.(1)求且的概率;(2)记,求的分布列及数学期望.18.(12分)已知定义在上的函数的图象关于原点对称,且函数在上为减函数.(1)证明:当时,;(2)若,求实数的取值范围.19.(12分)已知函数,曲线在点处切线与直线垂直.(1)试比较与的大小,并说明理由;(2)若函数有两个不同的零点,,证明:.20.(12分)《西游记女儿国》是由星皓影业有限公司出品的喜剧魔幻片,由郑保瑞执导,郭富城、冯绍峰、赵丽颖、小沈阳、罗仲谦、林志玲、梁咏琪、刘涛等人领衔主演,该片于2017年电影之夜获得年度最受期待系列电影奖,于2018年2月16日(大年初一)在中国内地上映.某机构为了了解年后社区居民观看《西游记女儿国》的情况,随机调查了当地一个社区的60位居民,其中男性居民有25人,观看了此片的有10人,女性居民有35人,观看了此片的有25人.(1)完成下面列联表:性别观看此片未观看此片合计男女合计(2)根据以上列联表,能否在犯错误的概率不超过0.05的前提下,认为“该社区居民是否观看《西游记女儿国》与性别有关”?请说明理由.参考公式:.附表:0.500.400.250.150.100.050.0250.0100.0050.0010.4550.7081.3232.0722.7063.8415.0246.6357.87910.828|21.(12分)已知关于的不等式的解集为(1)求实数的值;(2)求的最大值.22.(10分)己知,函数.(1)若,解不等式;(2)若函数,且存在使得成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

选项A错,并无周期变化,选项B错,并不是不断减弱,中间有增强.C选项错,10月的波动大小11月分,所以方差要大.D选项对,由图可知,12月起到1月份有下降的趋势,所以去年12月份的平均值大于今年1月份的平均值.选D.2、A【解题分析】

由已知可得对任意的恒成立,设则当时在上恒成立,在上单调递增,又在上不合题意;当时,可知在单调递减,在单调递增,要使,在上恒成立,只要,令可知在上单调递增,在上单调递减,又,故选A.3、B【解题分析】分析:由题意可得,是内的一条直线,则可能与平面和平面的交线相交,也有可能不相交,然后进行判断详解:在中,当与平面和平面的交线相交时,在内不存在与平行的直线,故错误在中,平面和平面相交,是内一条直线,由线面垂直的性质定理得在内必存在与垂直的直线,故正确在中,当与平面和平面的交线平行时,在内存在与平行的直线,故错误在中,由线面垂直的性质定理得在内必存在与垂直的直线,故错误故选点睛:本题主要考查的是空间中直线与平面之间的位置关系、直线与直线的位置关系,需要进行分类讨论,将可能出现的情况列举出来,取特例来判断语句的正确性4、C【解题分析】试题分析:以AB所在直线为x轴,AB中垂线为y轴,建立坐标系,设M(x,y),A(-a,0)、B(a,0);因为,所以y2=λ(x+a)(a-x),即λx2+y2=λa2,当λ=1时,轨迹是圆.当λ>0且λ≠1时,是椭圆的轨迹方程;当λ<0时,是双曲线的轨迹方程;当λ=0时,是直线的轨迹方程;综上,方程不表示抛物线的方程.故选C.考点:轨迹方程的求法,圆锥曲线方程。点评:中档题,判断轨迹是什么,一般有两种方法,一是定义法,二是求轨迹方程后加以判断。5、B【解题分析】直线4kx﹣4y﹣k=0可化为k(4x﹣1)﹣4y=0,故可知直线恒过定点(,0)∵抛物线y2=x的焦点坐标为(,0),准线方程为x=﹣,∴直线AB为过焦点的直线∴AB的中点到准线的距离∴弦AB的中点到直线x+=0的距离等于2+=.故选B.点睛:本题主要考查了抛物线的简单性质.解题的关键是利用了抛物线的定义.一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用.尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化.6、A【解题分析】分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论及推理形式是否都正确,根据这几个方面都正确,才能得到这个演绎推理正确.根据三段论进行判断即可得到结论.详解:演绎推理““因为时,是的极值点,而对于函数,,所以0是函数的极值点.”中,

大前提:时,在两侧的符号如果不相反,则不是的极值点,故错误,

故导致错误的原因是:大前提错误,

故选:A.点睛:本题考查演绎推理,考查学生分析解决问题的能力,属于基础题7、B【解题分析】

利用三角函数恒等变换,可得,,利用其为偶函数,得到,从而求得结果.【题目详解】因为,所以,因为为偶函数,所以,所以,所以的最小值为,故选B.【题目点拨】该题考查的是有关三角函数的图形平移的问题,在解题的过程中,需要明确平移后的函数解析式,根据其为偶函数,得到相关的信息,从而求得结果.8、B【解题分析】

构造函数,考查该函数的单调性,结合零点存在定理得出答案.【题目详解】构造函数,则该函数在上单调递增,,,,由零点存在定理可知,方程的实根所在区间为,故选B.【题目点拨】本题考查零点所在区间,考查零点存在定理的应用,注意零点存在定理所适用的情形,必要时结合单调性来考查,这是解函数零点问题的常用方法,属于基础题.9、C【解题分析】

根据题意,分2步进行分析,第一步从3件次品中抽取2件次品,第二步从7件正品中抽取3件正品,根据乘法原理计算求得结果.【题目详解】根据题意,分2步进行分析:①.从3件次品中抽取2件次品,有种抽取方法,;②.从7件正品中抽取3件正品,有种抽取方法,则抽取的5件产品中恰好有2件次品的抽法有种;故选:C.【题目点拨】本题考查排列组合的实际应用,注意是一次性抽取,抽出的5件产品步需要进行排列.10、B【解题分析】试题分析:要使函数有意义,则解得,有意义,须确保两个式子都要有意义,则,故选.考点:1.函数的定义域;2.简单不等式的解法.11、B【解题分析】

根据导函数求得,从而得到,代入得到结果.【题目详解】由题意:,则解得:本题正确选项:【题目点拨】本题考查导数值的求解问题,关键是能够通过导函数求得,从而确定导函数的解析式.12、C【解题分析】

配方得圆心坐标,圆的半径为1,由切线性质知,而的最小值为C点到的距离,由此可得结论.【题目详解】由题意圆的标准方程为,∴圆心为,半径为.又,到直线的距离为,∴.故选C.【题目点拨】本题考查圆切线的性质,考查面积的最小值,解题关键是把四边形面积用表示出来,而的最小值为圆心到直线的距离,从而易得解.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

根据()代入中求得的最大值,进而得到实数的取值范围。【题目详解】因为,所以(当且仅当时取等号);所以,即的最大值为,即实数的取值范围是;故答案为:【题目点拨】本题考查不等式恒成立问题的解题方法,解题关键是利用基本不等式求出的最大值,属于中档题。14、-1【解题分析】

通过,的齐次式,求得的值;再利用两角和差的正切公式求解.【题目详解】又解得:本题正确结果:【题目点拨】本题考查同角三角函数关系以及两角和差公式的应用,属于基础题.15、【解题分析】

画出满足条件的平面区域,结合的几何意义以及点到直线的距离求出的最小值即可.【题目详解】画出,,满足约束条件,的平面区域,如图所示:而的几何意义表示平面区域内的点到点的距离,显然到直线的距离是最小值,由,得最小值是,故答案为.【题目点拨】本题主要考查了简单的线性规划问题,考查数形结合思想,属于中档题.16、①④.【解题分析】分析:条件②等价于f(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,条件③等价于f(x)﹣f(﹣x)<0在(﹣∞,0)上恒成立,依次判断各函数是否满足条件即可得出结论.详解:由②可知当x>0时,f′(x)>0,当x<0时,f′(x)<0,∴f(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,f2(x)=ln(﹣x)=ln,∴f2(x)在R上单调递减,不满足条件②,∴f2(x)不是“偏对称函数”;又()=()=0,∴(x)在(0,+∞)上不单调,故(x)不满足条件②,∴(x)不是“偏对称函数”;又f2(x)=ln(﹣x)=ln,∴f2(x)在R上单调递减,不满足条件②,∴f2(x)不是“偏对称函数”;由③可知当x1<0时,f(x1)<f(﹣x2),即f(x)﹣f(﹣x)<0在(﹣∞,0)上恒成立,对于(x),当x<0时,(x)﹣(﹣x)=﹣x﹣e﹣x+1,令h(x)=﹣x﹣e﹣x+1,则h′(x)=﹣1+e﹣x>0,∴h(x)在(﹣∞,0)上单调递增,故h(x)<h(0)=0,满足条件③,由基本初等函数的性质可知(x)满足条件①,②,∴(x)为“偏对称函数”;对于f4(x),f4′(x)=2e2x﹣ex﹣1=2(ex﹣)2﹣,∴当x<0时,0<ex<1,∴f4′(x)<2(1﹣)2﹣=0,当x>0时,ex>1,∴f4′(x)>2(1﹣)2﹣=0,∴f4(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,满足条件②,当x<0,令m(x)=f4(x)﹣f4(﹣x)=e2x﹣e﹣2x+e﹣x﹣ex﹣2x,则m′(x)=2e2x+2e﹣2x﹣e﹣x﹣ex﹣2=2(e2x+e﹣2x)﹣(e﹣x+ex)﹣2,令e﹣x+ex=t,则t≥2,于是m′(x)=2t2﹣t﹣6=2(t﹣)2﹣≥2(2﹣)2﹣=0,∴m(x)在(﹣∞,0)上单调递增,∴m(x)<m(0)=0,故f4(x)满足条件③,又f4(0)=0,即f4(x)满足条件①,∴f4(x)为“偏对称函数”.故答案为:①④.点睛:本题以新定义“偏对称函数”为背景,考查了函数的单调性及恒成立问题的处理方法,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)分布列见解析,.【解题分析】

(1)由知,背诵6首,正确4首,错误2首,又,所以第一首一定背诵正确,由此求出对应的概率;(2)根据题意确定的取值,计算相对应的概率值,写出的分布列,求出数学期望.【题目详解】(1)当S6=20时,即背诵6首后,正确的有4首,错误的有2首.由Si≥0(i=1,2,3)可知,若第一首和第二首背诵正确,则其余4首可任意背诵正确2首;若第一首背诵正确,第二首背诵错误,第三首背诵正确,则其余3首可任意背诵正确2首.则所求的概率.(2)由题意知ξ=|S5|的所有可能的取值为10,30,50,又,,,,∴ξ的分布列为.【题目点拨】本题主要考查离散型随机变量的分布列与数学期望的计算,意在考查学生的逻辑推理能力与数学计算能力.18、(1)证明见解析;(2).【解题分析】

(1)由于是奇函数,,因此要证明的不等式可变形为要证明,因此只要说明与异号,即与的大小和与的大小关系正好相反即可,这由减函数的定义可得,证明时可分和分别证明即可;(2)这个函数不等式由奇函数的性质可化为,然后由单调性可去“”,并注意将和限制在定义域内,可得出关于的不等式组,就可解得范围.【题目详解】(1)∵定义在上的函数的图象关于原点对称,∴为奇函数.若,则,∴,∴,∴成立.若,则,∴.∴,∴成立.综上,对任意,当时,有恒成立.(2),得,解得,故所求实数的取值范围是.【题目点拨】本题考查函数单调性的定义以及单调性与奇偶性解不不等式,解题的关键就是利用奇偶性将不等式进行变形,结合单调性转化,同时要注意自变量要限制在定义域内,考查分析问题和解决问题的能力,属于中等题.19、(1),理由见解析(2)详见解析【解题分析】

(1)求出的导数,由两直线垂直的条件,即可得切线的斜率和切点坐标,进而可知的解析式和导数,求解单调区间,可得,即可得到与的大小;(2)运用分析法证明,不妨设,由根的定义化简可得,,要证:只需要证:,求出,即证,令,即证,令,求出导数,判断单调性,即可得证.【题目详解】(1)函数,,所以,又由切线与直线垂直,可得,即,解得,此时,令,即,解得,令,即,解得,即有在上单调递增,在单调递减所以即(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论