2024届广东省云浮数学高二第二学期期末联考试题含解析_第1页
2024届广东省云浮数学高二第二学期期末联考试题含解析_第2页
2024届广东省云浮数学高二第二学期期末联考试题含解析_第3页
2024届广东省云浮数学高二第二学期期末联考试题含解析_第4页
2024届广东省云浮数学高二第二学期期末联考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省云浮数学高二第二学期期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某校开设10门课程供学生选修,其中、、三门由于上课时间相同,至多选一门,学校规定每位学生选修三门,则每位学生不同的选修方案种数是()A.70 B.98 C.108 D.1202.从5名女教师和3名男教师中选出一位主考、两位监考参加2019年高考某考场的监考工作.要求主考固定在考场前方监考,一女教师在考场内流动监考,另一位教师固定在考场后方监考,则不同的安排方案种数为()A.105 B.210 C.240 D.6303.现有8个人排成一排照相,其中甲、乙、丙三人两两不相邻的排法的种数为()A. B. C. D.4.椭圆的长轴长为()A.1 B.2 C. D.5.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有()A.20种 B.30种 C.40种 D.60种6.的展开式中,的系数为()A.2 B.4 C.6 D.87.给出下列说法:(1)命题“,”的否定形式是“,”;(2)已知,则;(3)已知回归直线的斜率的估计值是2,样本点的中心为,则回归直线方程为;(4)对分类变量与的随机变量的观测值来说,越小,判断“与有关系”的把握越大;(5)若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变.其中正确说法的个数为()A.2 B.3 C.4 D.58.若cos(α+π4)=1A.718 B.23 C.4-9.已知随机变量服从二项分布,若,,则,分别等于()A., B., C., D.,10.如图梯形ABCD中,AD∥BC,∠ABC=90°,AD∶BC∶AB=2∶3∶4,E,F分别是AB,CD的中点,将四边形ADFE沿直线EF进行翻折,给出四个结论:①DF⊥BC;②BD⊥FC;③平面DBF⊥平面BFC;④平面DCF⊥平面BFC.则在翻折过程中,可能成立的结论的个数为()A.1 B.2 C.3 D.411.函数f(x)=lnxA. B. C. D.12.已知某一随机变量ξ的概率分布列如图所示,且E(ξ)=6.3,则a的值为()ξ4a9P0.50.1bA.5 B.6 C.7 D.8二、填空题:本题共4小题,每小题5分,共20分。13.要设计一个容积为的下端为圆柱形、上端为半球形的密闭储油罐,已知圆柱侧面的单位面积造价是下底面积的单位面积造价的一半,而顶部半球面的单位面积造价又是圆柱侧面的单位面积造价的一半,储油罐的下部圆柱的底面半径_______时,造价最低.14.已知函数有两个极值点,则实数m的取值范围为________.15.已知函数则的最大值是______.16.已知,区域满足:,设,若对区域内的任意两点,都有成立,则的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=ax-3+10(1)求a的值;(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大,并求出最大利润.18.(12分)已知集合,其中,集合.若,求;若,求实数的取值范围.19.(12分)如图所示,是边长为3的正方形,平面与平面所成角为.(Ⅰ)求证:平面;(Ⅱ)设点是线段上一个动点,试确定点的位置,使得平面,并证明你的结论.20.(12分)已知函数(为常数,是自然对数的底数),曲线在点处的切线与轴平行.(1)求的值;(2)求的单调区间.21.(12分)四棱锥中,底面是中心为的菱形,,.(1)求证:平面;(2)若直线与平面所成的角为,求二面角正弦值.22.(10分)盒子中有大小和形状完全相同的个红球、个白球和个黑球,从中不放回地依次抽取个球.(1)求在第次抽到红球的条件下,第次又抽到红球的概率;(2)若抽到个红球记分,抽到个白球记分,抽到个黑球记分,设得分为随机变量,求随机变量的分布列.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】根据题意,分2种情况讨论:①、从A,B,C三门中选出1门,其余7门中选出2门,有种选法,②、从除A,B,C三门之外的7门中选出3门,有种选法;故不同的选法有63+35=98种;故选:B.点睛:(1)解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解.2、B【解题分析】试题分析:由题意得,先选一名女教师作为流动监控员,共有种,再从剩余的人中,选两名监考员,一人在前方监考,一人在考场后监考,共有种,所以不同的安排方案共有种方法,故选B.考点:排列、组合的应用.3、C【解题分析】先排剩下5人,再从产生的6个空格中选3个位置排甲、乙、丙三人,即,选C.4、B【解题分析】

将椭圆方程化成标准式,根据椭圆的方程可求,进而可得长轴.【题目详解】解:因为,所以,即,,所以,故长轴长为故选:【题目点拨】本题主要考查了椭圆的定义的求解及基本概念的考查,属于基础题.5、A【解题分析】

根据题意,分析可得,甲可以被分配在星期一、二、三;据此分3种情况讨论,计算可得其情况数目,进而由加法原理,计算可得答案.解:根据题意,要求甲安排在另外两位前面,则甲有3种分配方法,即甲在星期一、二、三;分3种情况讨论可得,甲在星期一有A42=12种安排方法,甲在星期二有A32=6种安排方法,甲在星期三有A22=2种安排方法,总共有12+6+2=20种;故选A.6、D【解题分析】

由题意得到二项展开式的通项,进而可得出结果.【题目详解】因为的展开式的第项为,令,则,所以的系数为8.故选D【题目点拨】本题主要考查求指定项的系数问题,熟记二项式定理即可,属于常考题型.7、B【解题分析】

根据含有一个量词的命题的否定,直接判断(1)错;根据正态分布的特征,直接判断(2)对;根据线性回归方程的特点,判断(3)正确;根据独立性检验的基本思想,可判断(4)错;根据方差的特征,可判断(5)正确.【题目详解】(1)命题“,”的否定形式是“,”,故(1)错;(2)因为,即服从正态分布,均值为,所以;故(2)正确;(3)因为回归直线必过样本中心,又已知回归直线的斜率的估计值是2,样本点的中心为,所以,即所求回归直线方程为:;故(3)正确;(4)对分类变量与的随机变量的观测值来说,越小,判断“与有关系”的把握越大;故(4)错;(5)若将一组样本数据中的每个数据都加上同一个常数后,方差不变.故(5)错.故选:B.【题目点拨】本题主要考查命题真假的判定,熟记相关知识点即可,属于基础题型.8、C【解题分析】分析:利用同角三角函数的基本关系式sin(π4+α)详解:因为cos(则0<π4+α<则sin[(故选C.点睛:本题主要考查了同角三角函数的基本关系式,以及两角差的正弦函数公式的应用,其中熟记三角恒等变换的公式是化简求值的关键,着重考查了推理与运算能力.9、C【解题分析】分析:直接利用二项分布的期望与方差列出方程求解即可.详解:随机变量服从二项分布,若,,

可得故选:C.点睛:本题考查离散型随机变量的分布列的期望以及方差的求法,考查计算能力.10、B【解题分析】分析:利用空间中线线、线面、面面间的位置关系求解.详解:对于①:因为BC∥AD,AD与DF相交不垂直,所以BC与DF不垂直,则①错误;对于②:设点D在平面BCF上的射影为点P,当BP⊥CF时就有BD⊥FC,而AD:BC:AB=2:3:4可使条件满足,所以②正确;对于③:当点P落在BF上时,DP⊂平面BDF,从而平面BDF⊥平面BCF,所以③正确;对于④:因为点D的投影不可能在FC上,所以平面DCF⊥平面BFC不成立,即④错误.故选B.点睛:本题考查命题真假的判断,解题时要认真审题,注意空间思维能力的培养.11、A【解题分析】

利用函数的奇偶性,排除选项B,D,再利用特殊点的函数值判断即可.【题目详解】函数为非奇非偶函数,排除选项B,D;当-1<x<0,f(x)<0,排除选项C故选:A.【题目点拨】本题考查函数的图象的判断,函数的奇偶性以及函数的图象的变化趋势是判断函数的图象的常用方法.12、C【解题分析】分析:先根据分布列概率和为1得到b的值,再根据E(X)=6.3得到a的值.详解:根据分布列的性质得0.5+0.1+b=1,所以b=0.4.因为E(X)=6.3,所以4×0.5+0.1×a+9×0.4=6.3,所以a=7.故答案为C.点睛:(1)本题主要考查分布列的性质和随机变量的期望的计算,意在考查学生对这些知识的掌握水平.(2)分布列的两个性质:①,;②.二、填空题:本题共4小题,每小题5分,共20分。13、.【解题分析】

根据造价关系,得到总造价,再利用导数求得的最大值.【题目详解】设圆柱的高为,圆柱底面单位面积造价为,总造价为,因为储油罐容积为,所以,整理得:,所以,令,则,当得:,当得,所以当时,取最大值,即取得最大值.【题目点拨】本题考查导数解决实际问题,考查运算求解能力和建模能力,求解时要把相关的量设出,并利用函数与方程思想解决问题.14、【解题分析】

根据极值点个数可确定根的个数,将问题转化为与有两个不同交点,利用数形结合的方式可求得结果.【题目详解】由题意得:.有两个极值点,有两个不等实根,即有两个不等实根,可等价为与有两个不同交点,,当时,;当时,,在上单调递减,在上单调递增,;当时,;当时,,可得图象如下图所示:由图象可知,若与有两个不同交点,则,解得:,即实数的取值范围为.故答案为:.【题目点拨】本题考查根据函数极值点的个数求解参数范围的问题,关键是能够将问题转化为导函数为零的方程根的个数,进而进一步转化为两函数交点个数问题的求解,利用数形结合的方式可求得结果.15、【解题分析】

分别在、和三种情况下求解在区间内的最大值,综合即可得到结果.【题目详解】当时,,此时:当时,,此时:当时,,此时:综上所述:本题正确结果:【题目点拨】本题考查分段函数最值的求解,关键是能够通过函数每一段区间上的解析式分别求解出在每一段区间上的最值.16、【解题分析】

由题意可知直线与圆相切,由相切定义可得,令,由可求其范围.【题目详解】由题意可得:直线与圆相切即,化简得:,令故答案为:【题目点拨】本题考查了直线与圆的位置关系,考查了三角换元法,本题的关键在于题干条件的转化,由线性规划知识可知位于直线同一侧的点正负性相同,满足题目要求.属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)6(2)x=4,46【解题分析】

(1)由f(5)=13代入函数的解析式,解关于a的方程,可得a值;(2)商场每日销售该商品所获得的利润=每日的销售量×销售该商品的单利润,可得日销售量的利润函数为关于x的三次多项式函数,再用求导数的方法讨论函数的单调性,得出函数的极大值点,从而得出最大值对应的x值.【题目详解】解:(1)因为x=5时,y=13,所以a2+10=13,故(2)由(Ⅰ)可知,该商品每日的销售量y=所以商场每日销售该商品所获得的利润为f(x)=(x-3)[6从而,f′(x)=10[(x﹣6)2+2(x﹣3)(x﹣6)]=30(x﹣6)(x﹣4)于是,当x变化时,f(x)、f′(x)的变化情况如下表:x(3,4)4(4,6)f'(x)+0﹣f(x)单调递增极大值46单调递减由上表可得,x=4是函数f(x)在区间(3,6)内的极大值点,也是最大值点.所以,当x=4时,函数f(x)取得最大值,且最大值等于46答:当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.【题目点拨】本题函数解析式的建立比较容易,考查的重点是利用导数解决生活中的优化问题,属于中档题.18、(1);【解题分析】

解出二次不等式以及分式不等式得到集合和,根据并集的定义求并集;由集合是集合的子集,可得,根据包含关系列出不等式,求出的取值范围.【题目详解】集合,由,则,解得,即,,则,则.,即,可得,解得,故m的取值范围是【题目点拨】本题考查集合的交并运算,以及由集合的包含关系求参数问题,属于基础题.在解有关集合的题的过程中,要注意在求补集与交集时要考虑端点是否可以取到,这是一个易错点,同时将不等式与集合融合,体现了知识点之间的交汇.19、(Ⅰ)见解析;(Ⅱ).【解题分析】试题分析:(1)由线面垂直的判定定理证明;(2)建立空间直角坐标系,写出各点坐标,由于点M在线段BD上,所以设,求出平面BEF的法向量,由,求出点M的坐标.试题解析:(Ⅰ)证明:∵平面,∴,∵是正方形,∴,又,∴平面.(Ⅱ)解:因为两两垂直,所以建立空间直角坐标系如图所示,因为与平面所成角为,即,所以,由,可知,则,所以,设平面的法向量,则,即.令得,,又点是线段上一动点,设,则因为平面,所以,即解得.此时,点的坐标为(2,2,0)即当时,平面.20、(1)1;(2)单调递增区间为,单调递减区间为【解题分析】试题分析:(1)利用导函数与函数切线的关系得到关于实数k的方程,解方程可得k=1;(2)结合(1)的结论对函数的解析式进行求导可得,研究分子部分,令,结合函数h(x)的性质可得:的单调递增区间是(0,1)单调递减区间是.试题解析:(1)由题意得又,故(2)由(1)知,设,则即在上是减函数,由知,当时,,从而当时,,从而综上可知,的单调递增区间是(0,1)单调递减区间是21、(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论