湖北省武汉市青山区2024届高二数学第二学期期末监测模拟试题含解析_第1页
湖北省武汉市青山区2024届高二数学第二学期期末监测模拟试题含解析_第2页
湖北省武汉市青山区2024届高二数学第二学期期末监测模拟试题含解析_第3页
湖北省武汉市青山区2024届高二数学第二学期期末监测模拟试题含解析_第4页
湖北省武汉市青山区2024届高二数学第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省武汉市青山区2024届高二数学第二学期期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在椭圆内,通过点,且被这点平分的弦所在的直线方程为()A. B.C. D.2.一个几何体的三视图如右图所示,则这个几何体的体积为()A. B. C. D.83.函数的部分图象如图所示,则函数的解析式为().A. B.C. D.4.下列结论中正确的是()A.导数为零的点一定是极值点B.如果在附近的左侧,右端,那么是极大值C.如果在附近的左侧,右端,那么是极小值D.如果在附近的左侧,右端,那么是极大值5.给出一个命题p:若,且,则a,b,c,d中至少有一个小于零,在用反证法证明p时,应该假设()A.a,b,c,d中至少有一个正数 B.a,b,c,d全为正数C.a,b,c,d全都大于或等于0 D.a,b,c,d中至多有一个负数6.如图所示,阴影部分的面积为()A. B.1 C. D.7.若,则()A.2 B.4 C. D.88.中国古代儒家提出的“六艺”指:礼、乐、射、御、书、数.某校国学社团预在周六开展“六艺”课程讲座活动,周六这天准备排课六节,每艺一节,排课有如下要求:“乐”与“书”不能相邻,“射”和“御”要相邻,则针对“六艺”课程讲座活动的不同排课顺序共有()A.18种 B.36种 C.72种 D.144种9.某程序框图如图所示,若运行该程序后输出()A. B. C. D.10.设6人站成一排,甲、乙、丙3个人不能都站在一起的排法种数为()A.720 B.144 C.576 D.32411.在长方形中,为的中点,为的中点,设则()A. B. C. D.12.一个圆锥被过其顶点的一个平面截去了较少的一部分几何体,余下的几何体的三视图如图,则余下部分的几何体的体积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.球的半径为8,经过球面上一点作一个平面,使它与经过这点的半径成45°角,则这个平面截球的截面面积为_________________.14.己知幂函数在上单调递减,则______.15.若直角坐标平面内两点满足点都在函数的图像上,且点关于原点对称,则称是函数一个“姊妹点对”(与可看作同一“姊妹点对”).已知则的“姊妹点对”有_______个.16.棱长为的正四面体的高为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等比数列,的公比分别为,.(1)若,,求数列的前项和;(2)若数列,满足,求证:数列不是等比数列.18.(12分)已知数列满足,,.(Ⅰ)证明:数列是等比数列,并求数列的通项公式;(Ⅱ)设,求数列的前项和.19.(12分)从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动.设所选3人中女生人数为,求的数学期望.20.(12分)如图是一个路灯的平面设计示意图,其中曲线段AOB可视为抛物线的一部分,坐标原点O为抛物线的顶点,抛物线的对称轴为y轴,灯杆BC可视为线段,其所在直线与曲线AOB所在的抛物线相切于点B.已知AB=2分米,直线轴,点C到直线AB的距离为8分米.灯杆BC部分的造价为10元/分米;若顶点O到直线AB的距离为t分米,则曲线段AOB部分的造价为元.设直线BC的倾斜角为,以上两部分的总造价为S元.(1)①求t关于的函数关系式;②求S关于的函数关系式;(2)求总造价S的最小值.21.(12分)已知函数.(1)若是的一个极值点,判断的单调性;(2)若有两个极值点,,且,证明:.22.(10分)已知,函数.(1)当时,解不等式;(2)若关于的方程的解集中恰有一个元素,求的取值范围;(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】试题分析:设以点为中点的弦的端点分别为,则,又,两式相减化简得,即以点为中点的弦所在的直线的斜率为,由直线的点斜式方程可得,即,故选A.考点:直线与椭圆的位置关系.2、C【解题分析】分析:由三视图可知,该几何体表示一个棱长为的正方体切去一个以直角边长为的等腰直角三角形为底面,高为的三棱锥,即可利用体积公式,求解几何体的体积.详解:由给定的三视图可知,该几何体表示一个棱长为的正方体切去一个以直角边长为的等腰直角三角形为底面,高为的三棱锥,所以该几何体的体积为,故选C.点睛:本题考查了几何体的三视图及几何体的体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.3、D【解题分析】

根据最值计算,利用周期计算,当时取得最大值2,计算,得到函数解析式.【题目详解】由题意可知,因为:当时取得最大值2,所以:,所以:,解得:,因为:,所以:可得,可得函数的解析式:.故选D.【题目点拨】本题主要考查了正弦型函数的图象与性质,其中解答中根据函数的图象求得函数的解析式,熟记三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题4、B【解题分析】

根据极值点的判断方法进行判断.【题目详解】若,则,,但是上的增函数,故不是函数的极值点.因为在的左侧附近,有,在的右侧附近,有,故的左侧附近,有为增函数,在的右侧附近,有为减函数,故是极大值.故选B.【题目点拨】函数的极值刻画了函数局部性质,它可以理解为函数图像具有“局部最低(高)”的特性,用数学语言描述则是:“在的附近的任意,有()”.另外如果在附近可导且的左右两侧导数的符号发生变化,则必为函数的极值点,具体如下.(1)在的左侧附近,有,在的右侧附近,有,则为函数的极大值点;(1)在的左侧附近,有,在的右侧附近,有,则为函数的极小值点;5、C【解题分析】

由“中至少一个小于零”的否定为“全都大于等于”即可求解.【题目详解】因为“a,b,c,d中至少有一个小于零”的否定为“全都大于等于”,

所以由用反证法证明数学命题的方法可得,应假设“全都大于等于”,

故选:C.【题目点拨】本题主要考查了反证法,反证法的证明步骤,属于容易题.6、B【解题分析】如图所示轴与函数围成的面积为,因此故选B.7、D【解题分析】

通过导数的定义,即得答案.【题目详解】根据题意得,,故答案为D.【题目点拨】本题主要考查导数的定义,难度不大.8、D【解题分析】

由排列、组合及简单的计数问题得:由题意可将“射”和“御”进行捆绑看成一个整体,共有种,然后与“礼”、“数”进行排序,共有种,最后将“乐”与“书”插入4个空即可,共有种,再相乘得解.【题目详解】由题意“乐”与“书”不能相邻,“射”和“御”要相邻,可将“射”和“御”进行捆绑看成一个整体,共有种,然后与“礼”、“数”进行排序,共有种,最后将“乐”与“书”插入4个空即可,共有种,由于是分步进行,所以共有种,故选:D.【题目点拨】本题考查排列、组合及简单计数问题,根据问题选择合适的方法是关键,此类问题常见的方法有元素优先法、捆绑法、插空法等,本题属于中等题.9、D【解题分析】

通过分析可知程序框图的功能为计算,根据最终输出时的值,可知最终赋值时,代入可求得结果.【题目详解】根据程序框图可知其功能为计算:初始值为,当时,输出可知最终赋值时本题正确选项:【题目点拨】本题考查根据程序框图的功能计算输出结果,关键是能够明确判断出最终赋值时的取值.10、C【解题分析】

先求出6人站成一排,有多少种排法,再计算把甲、乙、丙3个人捆绑在一起,再跟剩下的3人排列,有多少种排法,这样就可以用减法求出甲、乙、丙3个人不能都站在一起的排法种数.【题目详解】求出6人站成一排,有种排法,把甲、乙、丙3个人捆绑在一起,再跟剩下的3人排列,有种排法,因此甲、乙、丙3个人不能都站在一起的排法种数为,故本题选C.【题目点拨】本题考查了全排列、捆绑法,考查了数学运算能力.11、A【解题分析】

由平面向量线性运算及平面向量基本定理,即可化简,得到答案.【题目详解】如图所示,由平面向量线性运算及平面向量基本定理可得:.【题目点拨】本题主要考查了平面向量的线性运算,以及平面向量的基本定理的应用,其中解答中熟记向量的运算法则和平面向量的基本定理是解答的关键,着重考查了推理与运算能力,属于基础题.12、B【解题分析】分析:由三视图求出圆锥母线,高,底面半径.进而求出锥体的底面积,代入锥体体积公式,可得答案.详解:由已知中的三视图,圆锥母线l=圆锥的高h=,圆锥底面半径为r==2,由题得截去的底面弧的圆心角为120°,底面剩余部分为S=πr2+sin120°=π+,故几何体的体积为:V=Sh=×(π+)×2=.故答案为:B.点睛:(1)本题主要考查三视图找原图,考查空间几何体的体积的计算,意在考查学生对这些知识的掌握水平和空间想象能力基本的计算能力.(2)解答本题的关键是弄清几何体的结构特征并准确计算各几何要素.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

先求出截面圆的半径,再算截面面积。【题目详解】截面圆半径为,截面面积为。【题目点拨】先求出截面圆的半径,再算截面面积。14、2【解题分析】

先由幂函数的定义,得到,求出,再由题意,根据幂函数的单调性,即可得出结果.【题目详解】因为为幂函数,所以或,又在上单调递减,由幂函数的性质,可得:,解得:,所以.故答案为:.【题目点拨】本题主要考查由幂函数单调性求参数,熟记幂函数的定义,以及幂函数的单调性即可,属于常考题型.15、2.【解题分析】

根据题意可知,只需作出函数y=x2+2x(x<0)的图象关于原点对称的图象,看它与函数交点个数即可.【题目详解】根据题意可知,“友好点对”满足两点:都在函数图象上,且关于坐标原点对称.可作出函数的图象关于原点对称的图象,看它与函数交点个数即可.如图所示:当时,观察图象可得:它们有2个交点.故答案为:2.【题目点拨】本题考查函数的新定义问题,根据已知条件将问题转化为零点个数问题,利用数形结合画出图像即可求解,属于中等题.16、【解题分析】

利用正弦定理计算出正四面体底面三角形的外接圆半径,再利用公式可得出正四面体的高.【题目详解】设正四面体底面三角形的外接圆的半径为,由正弦定理得,,因此,正四面体的高为,故答案为.【题目点拨】本题考查正四面体高的计算,解题时要充分分析几何体的结构,结合勾股定理进行计算,考查空间想象能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解题分析】

(1)分别求出,再得,仍然是等比数列,由等比数列前项和公式可得;(2)由已知,假设是等比数列,则,代入求得,与已知矛盾,假设错误.【题目详解】(1),,,则;证明:(2)假设数列是等比数列,可得,设数列的公比为,可得,因此有,即,因此有,与已知条件中不相等矛盾,因此假设不成立,故数列不是等比数列.【题目点拨】本题考查等比数列的通项公式,前项和公式,考查否定性命题的证明.证明否定性命题可用反证法,假设结论的反面成立,结合已知推理出矛盾的结论,说明假设错误.也可直接证明,即能说明不是等比数列.18、(1).(2).【解题分析】试题分析:(1)由得出,由等比数列的定义得出数列为等比数列,并且求出的通项公式;(2)求出数列的通项公式,利用错位相减法求出数列的前n项和.试题解析:(1)由,得,即,且,所以数列是以为首项,为公比的等比数列.所以,故数列的通项公式为.(2)由(1)知,,所以.所以.①.②①-②,得,所以.故数列的前项和.19、【解题分析】

的可能值为,计算概率得到分布列,再计算数学期望得到答案.【题目详解】的可能值为,则;;.故分布列为:故.【题目点拨】本题考查了概率的计算,分布列,数学期望,意在考查学生的计算能力和应用能力.20、(1)①.②.(2)元.【解题分析】分析:(1)①先设曲线段所在的抛物线的方程为,代入点B可得a的值,然后求出切线BC的斜率,转化为倾斜角从建立t与的等式关系;②根据t与的关系得出曲线段部分的造价为元,然后求出BC段的造价,故两段的造价之和;(2)由S的表达式根据导数确定函数的单调性,即可求得最小值.详解:(1)①设曲线段所在的抛物线的方程为,将代入得,故抛物线的方程为,求导得,故切线的斜率为,而直线的倾斜角为,故,t关于的函数关系为.②因为,所以曲线段部分的造价为元,因为点到直线的距离为8分米,直线的倾斜角为,故,部分的造价为,得两部分的总造价为,.(2),,其中恒成立,令得,设且为锐角,列表如下:0极小故当时有最小值,此时,,,故总造价S的最小值为元.点睛:函数的实际应用题,做题时一定要有耐心将题意理解清楚,多读两遍题,然后根据条件建立等式关系,结合函数分析思维求解即可,属于较难题.21、(1)在单调递减,在单调递增.(2)见解析【解题分析】

(1)求出导函数,由极值点求出参数,确定的正负得的单调性;(2)求出,得极值点满足:所以,由(1)即,不妨设.要证,则只要证,而,因此由的单调性,只要能证,即即可.令,利用导数的知识可证得结论成立.【题目详解】(1)由已知得.因为是的一个极值点,所以,即,所以,令,则,令,得,令,得;所以在单调递减,在单调递增,又当时,,,所以当时,,当时,;即在单调递减,在单调递增.(2),因此极值点满足:所以由(1)即,不妨设.要证,则只要证,而,因此由的单调性,只要能证,即即可.令,则,当时,,,,所以,即在单调递增,又,所以,所以,即,又,,在单调递增,所以,即.【题目点拨】本题考查导数的应用,利用导数研究函数的单调性、极值、最值等问题,考查抽象概括能力、推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想、有限与无限思想,体现综合性、应用性与创新性,导向对发展数学抽象、逻辑推理、直观想象、数学运算等核心素养的关注.22、(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论