湖南省岳阳临湘市2024届数学高二第二学期期末学业质量监测模拟试题含解析_第1页
湖南省岳阳临湘市2024届数学高二第二学期期末学业质量监测模拟试题含解析_第2页
湖南省岳阳临湘市2024届数学高二第二学期期末学业质量监测模拟试题含解析_第3页
湖南省岳阳临湘市2024届数学高二第二学期期末学业质量监测模拟试题含解析_第4页
湖南省岳阳临湘市2024届数学高二第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省岳阳临湘市2024届数学高二第二学期期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.中,角、、的对边分别为,,,若,三角形面积为,,则()A.7 B.8 C.5 D.62.已知随机变量服从二项分布,若,,则,分别等于()A., B., C., D.,3.已知实数,满足条件,则的取值范围是()A. B. C. D.4.过点作曲线的切线,则切线方程为()A. B.C. D.5.过双曲线的右焦点作圆的切线(切点为),交轴于点.若为线段的中点,则双曲线的离心率是()A. B. C. D.6.实验女排和育才女排两队进行比赛,在一局比赛中实验女排获胜的概率是,没有平局.若采用三局两胜制,即先胜两局者获胜且比赛结束,则实验女排获胜的概率等于()A. B. C. D.7.随机变量,若,则为()A.0.2 B.0.3 C.0.4 D.0.68.函数在区间上的图象如图所示,,则下列结论正确的是()A.在区间上,先减后增且B.在区间上,先减后增且C.在区间上,递减且D.在区间上,递减且9.函数的大致图象是()A. B.C. D.10.设非零向量,,满足,,则与的夹角为()A. B. C. D.11.在“新零售”模式的背景下,自由职业越来越流行,诸如:淘宝网店主、微商等等.现调研某自由职业者的工资收入情况.记表示该自由职业者平均每天工作的小时数,表示平均每天工作个小时的月收入.(小时)23456(千元)2.5344.56假设与具有线性相关关系,则关于的线性回归方程必经过点()A. B. C. D.12.函数的单调递减区间为()A.或 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.的二项展开式中,项的系数是__________.(用数字作答)14.设随机变量ξ服从二项分布,则等于__________15.已知函数的导函数为,若,则的值为___.16.已知直线与双曲线的一条渐近线平行,则这两条平行直线之间的距离是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在直三棱柱中,,,,.(1)求三棱柱的体积;(2)若点M是棱AC的中点,求直线与平面ABC所成的角的大小.18.(12分)已知函数.(1)求的最小正周期;(2)求的最大值,并说明取最大值时对应的的值.19.(12分)已知函数.(1)讨论的导函数零点的个数;(2)若函数存在最小值,证明:的最小值不大于1.20.(12分)2016年底某购物网站为了解会员对售后服务(包括退货、换货、维修等)的满意度,从2016年下半年的会员中随机调查了个会员,得到会员对售后服务的满意度评分如下:958875829094986592100859095778770899390848283977391根据会员满意度评分,将会员的满意度从低到高分为三个等级:满意度评分低于分分到分不低于分满意度等级不满意比较满意非常满意(1)根据这个会员的评分,估算该购物网站会员对售后服务比较满意和非常满意的频率;(2)以(1)中的频率作为概率,假设每个会员的评价结果相互独立.(i)若从下半年的所有会员中随机选取个会员,求恰好一个评分比较满意,另一个评分非常满意的概率;(ii)若从下半年的所有会员中随机选取个会员,记评分非常满意的会员的个数为,求的分布列及数学期望.21.(12分)已知是等差数列,是等比数列,且,,,.(1)求的通项公式;(2)设,求数列的前n项和.22.(10分)某仪器经过检验合格才能出厂,初检合格率为;若初检不合格,则需要进行调试,经调试后再次对其进行检验;若仍不合格,作为废品处理,再检合格率为.每台仪器各项费用如表:项目生产成本检验费/次调试费出厂价金额(元)(1)求每台仪器能出厂的概率;(2)求生产一台仪器所获得的利润为元的概率(注:利润=出厂价-生产成本-检验费-调试费);(3)假设每台仪器是否合格相互独立,记为生产两台仪器所获得的利润,求的分布列和数学期望.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】分析:由已知及三角形的面积公式可求bc,然后由a+b+c=20以及余弦定理,即可求a.详解:由题意可得,S△ABC=bcsinA=bcsin60°∴bcsin60°=10∴bc=40∵a+b+c=20∴20﹣a=b+c.由余弦定理可得,a2=b2+c2﹣2bccos60°=(b+c)2﹣3bc=(20﹣a)2﹣120解得a=1.故选A.点睛:本题综合考查正弦定理、余弦定理及三角形的面积公式等知识的综合应用,解题的关键是灵活利用公式.考查计算能力.2、C【解题分析】分析:直接利用二项分布的期望与方差列出方程求解即可.详解:随机变量服从二项分布,若,,

可得故选:C.点睛:本题考查离散型随机变量的分布列的期望以及方差的求法,考查计算能力.3、A【解题分析】

作出不等式组对应的平面区域,利用目标函数的几何意义,进行平移,结合图象得到的取值范围.【题目详解】解:由得,作出实数,满足条件对应的平面区域,如下图所示:平移直线,由图象可知当直线经过点时,值最小.由,解得,,由,解得,..故选:A.【题目点拨】本题考查线性规划的基本应用,利用数形结合的方法,属于基础题.4、C【解题分析】

设出切点坐标求出原函数的导函数,得到函数在时的导数值,即切线的斜率,然后由直线方程的点斜式得切线方程,代入已知点的坐标后求出切点的坐标,则切线方程可求.【题目详解】由,得,

设切点为

则,

∴切线方程为,

∵切线过点,

∴−ex0=ex0(1−x0),

解得:.

∴切线方程为,整理得:.故选C..【题目点拨】本题考查了利用导数研究过曲线上某点的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是中档题.5、B【解题分析】

在中,为线段的中点,又,得到等腰三角形,利用边的关系得到离心率.【题目详解】在中,为线段的中点,又,则为等腰直角三角形.故答案选B【题目点拨】本题考查了双曲线的离心率,属于常考题型.6、B【解题分析】试题分析:实验女排要获胜必须赢得其中两局,可以是1,2局,也可以是1,3局,也可以是2,3局.故获胜的概率为:,故选B.考点:独立事件概率计算.7、B【解题分析】分析:根据正态分布的整体对称性计算即可得结果.详解:故选B.点睛:该题考查的是有关正态分布的问题,在解题的过程中,涉及到的知识点有正态分布曲线的对称性,从而求得结果.8、D【解题分析】

由定积分,微积分基本定理可得:f(t)dt表示曲线f(t)与t轴以及直线t=0和t=x所围区域面积,当x增大时,面积增大,减小,g(x)减小,故g(x)递减且g(x)<0,得解.【题目详解】由题意g(x)f(t)dt,因为x∈(0,4),所以t∈(0,4),故f(t)<0,故f(t)dt的相反数表示曲线f(t)与t轴以及直线t=0和t=x所围区域面积,当x增大时,面积增大,减小,g(x)减小,故g(x)递减且g(x)<0,故选:D.【题目点拨】本题考查了定积分,微积分基本定理,属中档题.9、C【解题分析】

根据特殊位置的所对应的的值,排除错误选项,得到答案.【题目详解】因为所以当时,,故排除A、D选项,而,所以即是奇函数,其图象关于原点对称,故排除B项,故选C项.【题目点拨】本题考查根据函数的解析式判断函数图象,属于简单题.10、B【解题分析】

由,且,可得,展开并结合向量的数量积公式,可求出的值,进而求出夹角.【题目详解】由,且,得,则,即,故,则,故.又,所以.故选:B【题目点拨】本题考查向量夹角的求法,考查向量的数量积公式的应用,考查学生的计算求解能力,属于基础题.11、C【解题分析】分析:先求均值,再根据线性回归方程性质得结果.详解:因为,所以线性回归方程必经过点,选C.点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求,写出回归方程,回归直线方程恒过点.12、C【解题分析】

先求出函数的导函数,令导函数小于零,解不等式即可得出单调递减区间。【题目详解】由题可得,令,即,解得或,又因为,故,故选C【题目点拨】本题考查利用导函数求函数的单调区间,解题的关键是注意定义域,属于简单题。二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:先求出二项式的展开式的通项公式,令的指数等于,求出的值,即可求得展开式中项的系数.详解:的二项展开式的通项为,,展开式项的系数为故答案为.点睛:本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.14、【解题分析】

利用独立重复试验的概率计算出、、、,再将这些相加可得出.【题目详解】由于,所以,,,,,因此,,故答案为:.【题目点拨】本题考查二项分布独立重复试验的概率,解这类问题要注意将基本事件列举出来,关键在于灵活利用独立重复试验的概率公式进行计算,考查计算能力,属于中等题。15、【解题分析】

求函数的导函数,令即可求出的值.【题目详解】因为令则所以【题目点拨】本题主要考查了函数的导数,及导函数求值,属于中档题.16、【解题分析】因为直线ax+y+2=0与双曲线的一条渐近线y=x平行,所以-a=2,(或者-a=-2),则a=-2,(a=2,)假设a=2,则利用平行线间距离公式解得为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)由直三棱柱ABC﹣A1B1C1中,∠ABC=60°,BB1=3,AB=1,BC=1.能求出三棱柱ABC﹣A1B1C1的体积.(2)点M是棱AC的中点,B1M在平面ABC的射影为直线MB,则∠B1MB就是直线B1M与平面ABC所成的角的大小,由此能求出直线B1M与平面ABC所成的角的大小.【题目详解】(1)∵在直三棱柱ABC﹣A1B1C1中,∠ABC=60°,BB1=3,AB=1,BC=1.∴三棱柱ABC﹣A1B1C1的体积:V12.(2)点M是棱AC的中点,B1M在平面ABC的射影为直线MB,则∠B1MB就是直线B1M与平面ABC所成的角的大小,tan∠B1MB,∴∠B1MB=arctan.∴直线B1M与平面ABC所成的角的大小为arctan.【题目点拨】本题考查三棱锥的体积的求法,考查线面角的大小的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.18、(1)的最小正周期为(2)时,取得最大值【解题分析】

降次化为的形式再通过求出最小正周期。根据的性质求出最大值即可。【题目详解】(1),所以的最小正周期为.(2)由(1)知.当时,即时,取得最大值.【题目点拨】本题考查三角函数的基本性质,属于基础题。19、(1)见解析;(2)证明见解析.【解题分析】

(1)根据条件求出f'(x),然后通过构造函数g(x)=x2ex(x>1),进一步得到f'(x)的零点个数;(2)由题意可知a≥1时,函数f(x)无最小值,则只需讨论当a<1时,f(x)是否存在最小值即可.【题目详解】(1),令,故在上单调递增,且.当时,导函数没有零点,当时,导函数只有一个零点.(2)证明:当时..则函数无最小值.故时,则必存在正数使得.函数在上单调递减,在上单调递增,,令.则令,则,所以函数在上单调递减,在上单调递增,所以,即.所以的最小值不大于1.【题目点拨】本题考查了函数零点个数的判断和利用导数研究函数的单调性与最值,考查了函数思想和分类讨论思想,属中档题.20、(1)可估算该购物网站会员对售后服务比较满意和非常满意的频率分别为和.(2)(i);(ii)分布列见解析,0.6.【解题分析】试题分析:(1)由给出的个数据可得,非常满意的个数为,不满意的个数为,比较满意的个数为,由此可估算该购物网站会员对售后服务比较满意和非常满意的频率;(2)记“恰好一个评分比较满意,另一个评分非常满意”为事件,则.(ii)的可能取值为,由题意,随机变量由此能求出的分布列,数学期望及方差.试题解析:(1)由给出的个数据可得,非常满意的个数为,不满意的个数为,比较满意的个数为,,可估算该购物网店会员对售后服

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论