2024届福建省福州市三校联盟数学高二下期末检测模拟试题含解析_第1页
2024届福建省福州市三校联盟数学高二下期末检测模拟试题含解析_第2页
2024届福建省福州市三校联盟数学高二下期末检测模拟试题含解析_第3页
2024届福建省福州市三校联盟数学高二下期末检测模拟试题含解析_第4页
2024届福建省福州市三校联盟数学高二下期末检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省福州市三校联盟数学高二下期末检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如图所示的程序框图,若输入的值为,则输出的值为()A. B. C. D.2.设函数f(x)=,若函数f(x)的最大值为﹣1,则实数a的取值范围为()A.(﹣∞,﹣2) B.[2,+∞) C.(﹣∞,﹣1] D.(﹣∞,﹣2]3.已知双曲线与椭圆:有共同的焦点,它们的离心率之和为,则双曲线的标准方程为()A. B. C. D.4.设集合A={x|x2﹣2x﹣3≤0},B={x|2﹣x>0},则A∩B=()A.[﹣3,2) B.(2,3] C.[﹣1,2) D.(﹣1,2)5.已知关于的实系数一元二次方程的一个根在复平面上对应点是,则这个方程可以是()A. B.C. D.6.已知是定义在上的奇函数,且,若,则()A.-3 B.0 C.3 D.20197.已知函数,的值域是,则实数的取值范围是()A.(1,2) B. C.(1,3) D.(1,4)8.为了考察两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做10次和15次验,并且利用线性回归方程,求得回归直线分别为和.已知两个人在试验中发现对变x的观测数据的平均值都是s,对变量y的观测数据的平均值都为t,那么下列说法正确的()A.与相交于点(s,t)B.与相交,交点不一定是(s,t)C.与必关于点(s,t)对称D.与必定重合9.已知双曲线的一条渐近线方程为,则此双曲线的离心率为()A. B. C. D.10.已知,若的展开式中各项系数之和为,则展开式中常数项为()A. B. C. D.11.“四边形是矩形,四边形的对角线相等”补充以上推理的大前提是()A.正方形都是对角线相等的四边形 B.矩形都是对角线相等的四边形C.等腰梯形都是对角线相等的四边形 D.矩形都是对边平行且相等的四边形12.圆与圆的公切线有几条()A.1条 B.2条 C.3条 D.4条二、填空题:本题共4小题,每小题5分,共20分。13.已知一个总体为:、、、、,且总体平均数是,则这个总体的方差是______.14.函数在上的减区间为_____.15.定义在上的偶函数满足且在[—1,0]上是增函数,给出下列关于的判断:①是周期函数;②关于直线对称;③是[0,1]上是增函数;④在[1,2]上是减函数;⑤.其中正确的序号是_________.16.若不等式有且只有1个正整数解,则实数a的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了解人们]对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在1565岁的人群中随机调查100人,调査数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:年龄支持“延迟退休”的人数155152817(1)由以上统计数据填列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;45岁以下45岁以上总计支持不支持总计(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.②记抽到45岁以上的人数为,求随机变量的分布列及数学期望.18.(12分)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,短轴长为(1)求椭圆C的方程;(2)当直线l的斜率为3时,求ΔPOQ的面积;(3)在x轴上是否存在点M(m,0),满足|PM|=|QM|?若存在,求出m的取值范围;若不存在,请说明理由.19.(12分)已知函数,其中为实常数.(1)若当时,在区间上的最大值为,求的值;(2)对任意不同两点,,设直线的斜率为,若恒成立,求的取值范围.20.(12分)某校为“中学数学联赛”选拔人才,分初赛和复赛两个阶段进行,规定:分数不小于本次考试成绩中位数的具有复赛资格,某校有900名学生参加了初赛,所有学生的成绩均在区间内,其频率分布直方图如图.(1)求获得复赛资格应划定的最低分数线;(2)从初赛得分在区间的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间与各抽取多少人?(3)从(2)抽取的7人中,选出4人参加全市座谈交流,设表示得分在中参加全市座谈交流的人数,学校打算给这4人一定的物质奖励,若该生分数在给予500元奖励,若该生分数在给予800元奖励,用Y表示学校发的奖金数额,求Y的分布列和数学期望。21.(12分)如图,在四棱锥中,底面为菱形,,又底面,,为的中点.(1)求证:;(2)求平面与平面所成锐二面角的余弦值.22.(10分)如图,在四棱锥中,四边形为平行四边形,,平面,,.(1)求证:平面;(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

读懂流程图,可知每循环一次,的值减少4,当时,得到的值.【题目详解】根据流程图,可知每循环一次,的值减少4,输入,因为2019除以4余3,经过多次循环后,再经过一次循环后满足的条件,输出【题目点拨】流程图的简单问题,找到循环规律,得到的值,得到输出值.属于简单题.2、D【解题分析】

考虑x≥1时,f(x)递减,可得f(x)≤﹣1,当x<1时,由二次函数的单调性可得f(x)max=1+a,由题意可得1+a≤﹣1,可得a的范围.【题目详解】当x≥1时,f(x)=﹣log1(x+1)递减,可得f(x)≤f(1)=﹣1,当且仅当x=1时,f(x)取得最大值﹣1;当x<1时,f(x)=﹣(x+1)1+1+a,当x=﹣1时,f(x)取得最大值1+a,由题意可得1+a≤﹣1,解得a≤﹣1.故选:D.【题目点拨】本题考查分段函数的最值求法,注意运用对数函数和二次函数的单调性,考查运算能力,属于中档题.3、C【解题分析】

由椭圆方程求出双曲线的焦点坐标,及椭圆的离心率,结合题意进一步求出双曲线的离心率,从而得到双曲线的实半轴长,再结合隐含条件求得双曲线的虚半轴长得答案.【题目详解】由椭圆,得,,则,双曲线与椭圆的焦点坐标为,,椭圆的离心率为,则双曲线的离心率为.设双曲线的实半轴长为m,则,得,则虚半轴长,双曲线的方程是.故选C.【题目点拨】本题考查双曲线方程的求法,考查了椭圆与双曲线的简单性质,是中档题.4、C【解题分析】

求得集合A={x|-1≤x≤3},B={x|x<2},根据集合的交集运算,即可求解.【题目详解】由题意,集合A={x|x所以A∩B={x|-1≤x<2}=[-1,2).故选:C.【题目点拨】本题主要考查了集合的交集运算,其中解答中正确求解集合A,B,再根据集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.5、A【解题分析】

先由题意得到方程的两复数根为,(为虚数单位),求出,,根据选项,即可得出结果.【题目详解】因为方程的根在复平面内对应的点是,可设根为:,(为虚数单位),所以方程必有另一根,又,,根据选项可得,该方程为.故选A【题目点拨】本题主要考查复数的方程,熟记复数的运算法则即可,属于常考题型.6、B【解题分析】

根据题意,由函数的奇偶性分析可得,函数是周期为4的周期函数,据此求出、、的值,进而结合周期性分析可得答案.【题目详解】解:根据题意,是定义在上的奇函数,则,又由,则有,即,变形可得:,即函数是周期为4的周期函数,是定义在上的奇函数,则,又由,则,故.故选:B.【题目点拨】本题考查函数的奇偶性周期性的综合应用,涉及函数值的计算,属于基础题.7、B【解题分析】

先求出当x≤2时,f(x)≥4,则根据条件得到当x>2时,f(x)=3+logax≥4恒成立,利用对数函数的单调性进行求解即可.【题目详解】当x≤2时,f(x)=﹣x+6≥4,要使f(x)的值域是[4,+∞),则当x>2时,f(x)=3+logax≥4恒成立,即logax≥1,若0<a<1,则不等式logax≥1不成立,当a>1时,则由logax≥1=logaa,则a≤x,∵x>2,∴a≤2,即1<a≤2,故选:D.【题目点拨】本题主要考查函数值域的应用,利用分段函数的表达式先求出当x≤2时的函数的值域是解决本题的关键.8、A【解题分析】

根据线性回归方程l1和l2都过样本中心点(s,t),判断A说法正确.【题目详解】解:根据线性回归方程l1和l2都过样本中心点(s,t),∴与相交于点,A说法正确.故选:A.【题目点拨】本题考查了线性回归方程过样本中心点的应用问题,是基础题.9、B【解题分析】

由渐近线方程得出的值,结合可求得【题目详解】∵双曲线的一条渐近线方程为,∴,∴,解得,即离心率为.故选:B.【题目点拨】本题考查双曲线的渐近线和离心率,解题时要注意,要与椭圆中的关系区别开来.10、B【解题分析】

通过各项系数和为1,令可求出a值,于是可得答案.【题目详解】根据题意,在中,令,则,而,故,所以展开式中常数项为,故答案为B.【题目点拨】本题主要考查二项式定理,注意各项系数之和和二项式系数和之间的区别,意在考查学生的计算能力,难度不大.11、B【解题分析】

根据题意,用三段论的形式分析即可得答案.【题目详解】根据题意,用演绎推理即三段论形式推导一个结论成立,大前提应该是结论成立的依据,∵由四边形是矩形,得到四边形的对角线相等的结论,∴大前提一定是矩形都是对角线相等的四边形,故选B.【题目点拨】本题考查演绎推理的定义,关键是掌握演绎推理的形式,属于基础题.12、C【解题分析】

首先求两圆的圆心距,然后判断圆心距与半径和或差的大小关系,最后判断公切线的条数.【题目详解】圆,圆心,,圆,圆心,,圆心距两圆外切,有3条公切线.故选C.【题目点拨】本题考查了两圆的位置关系,属于简单题型.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

利用总体平均数为求出实数的值,然后利用方差公式可求出总体的方差.【题目详解】由于该总体的平均数为,则,解得.因此,这个总体的方差为.故答案为:.【题目点拨】本题考查方差的计算,利用平均数和方差公式进行计算是解题的关键,考查运算求解能力,属于基础题.14、【解题分析】

利用两角和差的正弦公式化简函数的解析式为,结合正弦函数图像,即可求得函数的减区间.【题目详解】函数根据正弦函数减区间可得:,解得:,故函数的减区间为:再由,可得函数的减区间为故答案为:【题目点拨】本题主要考查三角函数的单调区间的求法,利用正弦函数的图像和性质是解决本题的关键,考查了计算能力,属于基础题.15、①②⑤.【解题分析】,周期为2,,又,所以f(x)关于直线x=1对称,又因为f(x)为偶函数,在[-1,0]是增函数,所以在[0,1]上是减函数,由于f(x)在[1,2]上的图像与[-1,0]上的相同,因而在[1,2]也是增函数,综上正确的有①②⑤.16、【解题分析】

令(),求出,由导数研究函数的单调性,可得唯一的正整数解是什么,从而得出的范围.【题目详解】令(),则.当时,由得;由得;所以在单调递增,在单调递减,不合题意,舍去;当时,有,显然不成立;当时,由得;由得;所以在单调递减,在单调递增,依题意,需解得,故实数a的取值范围是.【题目点拨】本题考查不等式的正整数解,实质考查用导数研究函数的单调性.掌握用导数研究函数单调性的方法是解题关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)列联表见解析,在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”有差异.(2)①.②分布列见解析,.【解题分析】

分析:(1)根据频率分布直方图得到45岁以下与45岁以上的人数,由此可得列联表,求得后在结合临界值表可得结论.(2)①结合条件概率的计算方法求解;②由题意可得的可能取值为0,1,2,分别求出对应的概率后可得分布列和期望.详解:(1)由频率分布直方图知45岁以下与45岁以上各50人,故可得列联表如下:45岁以下45岁以上总计支持354580不支持15520总计5050100由列联表可得,所以在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异.(2)①从不支持“延迟退休”的人中抽取8人,则45岁以下的应抽6人,45岁以上的应抽2人.设“抽到1人是45岁以下”为事件A,“抽到的另一人是45岁以上”为事件B,则,∴,即抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率为.②从不支持“延迟退休”的人中抽取8人,则45岁以下的应抽6人,45岁以上的应抽2人.由题意得的可能取值为0,1,2.,,.故随机变量的分布列为:012所以.18、(1)x24+y23=1(2)453(3)在【解题分析】

(1)根据题中条件列有关a、b、c的方程组,解出这三个数,可得出椭圆C的标准方程;(2)先写出直线l的方程,并设点Px1,y1、Qx2,y2,将直线l的方程与椭圆C的方程联立,利用弦长公式求出(3)①当直线l的斜率为零时,得出m=0;②当直线l的斜率不为零时,设直线l的方程为y=kx-1,设点Px1,y1、Qx2,y2,将直线l的方程与椭圆C的方程联立,并列出韦达定理,求出线段PQ的中点【题目详解】(1)由已知得2b=23ca所以椭圆C的方程为x2(2)设直线l: y=3(x-1),设点由y=3(x-1)x24点O到直线l的距离为d=32,则(3)当直线l的斜率不存在时,不符合题意;当直线l的斜率为0时,m=0,当直线l的斜率不为0时,设直线l:y=k(x-1)(k≠0),设P由y=k(x-1)x2∴x1+xPQ的中点N4k23+4kkMN⋅kPQ综上,在x轴上存在点M(m,0),满足PM=QM,且m的取值范围为【题目点拨】本题考查椭圆方程的求解,考查椭圆中三角形面积的计算以及直线与椭圆位置关系的综合问题,这种类型问题常用韦达定理法求解,解题时要将题中一些问题等价转化,考查计算能力,属于中等题。19、(1)(2)【解题分析】

(1)讨论与0,1,e的大小关系确定最值得a的方程即可求解;(2)原不等式化为,不妨设,整理得,设,当时,,得,分离,求其最值即可求解a的范围【题目详解】(1),令,则.所以在上单调递增,在上单调递减.①当,即时,在区间上单调递减,则,由已知,,即,符合题意.②当时,即时,在区间上单调递增,在上单调递减,则,由已知,,即,不符合题意,舍去.③当,即时,在区间上单调递增,则,由已知,,即,不符合题意,舍去.综上分析,.(2)由题意,,则原不等式化为,不妨设,则,即,即.设,则,由已知,当时,不等式恒成立,则在上是增函数.所以当时,,即,即恒成立,因为,当且仅当,即时取等号,所以.故的取值范围是.【题目点拨】本题考查函数的单调性,不等式恒成立问题,构造函数与分离变量求最值,分类讨论思想,转化化归能力,是中档题20、(1)本次考试复赛资格最低分数线应划为100分;(2)5人,2人;(3)元.【解题分析】

(1)求获得复赛资格应划定的最低分数线,即是求考试成绩中位数,只需满足中位数两侧的频率之和均为0.5即可;(2)先确定得分在区间与的频率之比,即可求解;(3)先确定的可能取值,再求出其对应的概率,即可求出分布列和期望.【题目详解】(1)由题意知的频率为:,的频率为:所以分数在的频率为:,从而分数在的,假设该最低分数线为由题意得解得.故本次考试复赛资格最低分数线应划为100分。(2)在区间与,,在区间的参赛者中,利用分层抽样的方法随机抽取7人,分在区间与各抽取5人,2人,结果是5人,2人.(3)的可能取值为2,3,4,则:,从而Y的分布列为Y260023002000(元).【题目点拨】本题主要考查频率分布直方图求中位数,以及分层抽样和超几何分布等问题,熟记相关概念,即可求解,属于常考题型.21、(1)证明见解析.(2).【解题分析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论