版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省孝感市汉川市汉川二中数学高二第二学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为()A.8 B.6 C.4 D.22.设.若函数,的定义域是.则下列说法错误的是()A.若,都是增函数,则函数为增函数B.若,都是减函数,则函数为减函数C.若,都是奇函数,则函数为奇函数D.若,都是偶函数,则函数为偶函数3.如图,在菱形ABCD中,,线段AD,BD,BC的中点分别为E,F,K,连接EF,FK.现将绕对角线BD旋转,令二面角A-BD-C的平面角为,则在旋转过程中有()A. B. C. D.4.在一组数据为,,…,(,不全相等)的散点图中,若这组样本数据的相关系数为,则所有的样本点满足的方程可以是()A. B.C. D.5.某产品的广告费用万元与销售额万元的统计数据如下表:根据以上数据可得回归直线方程,其中,据此模型预报广告费用为6万元时,销售额为65.5万元,则,的值为()A., B.,C., D.,6.设复数,在复平面内的对应点关于虚轴对称,,则()A.-5 B.5 C.-4+i D.-4-i7.定义在R上的函数f(x)满足f(-x)=-f(x),f(x)=f(x+4),且x∈(-1,0)时,f(x)=2x+A.1B.45C.-1D.8.已知函数,且,则的取值范围为()A. B.C. D.9.函数的单调递减区间是()A. B. C. D.10.已知i为虚数单位,复数z满足,则复()A.1 B. C.i D.11.设是定义在上的奇函数,且当时,单调递减,若,则的值()A.恒为负值 B.恒等于零C.恒为正值 D.无法确定正负12.设集合,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的定义域为,部分对应值如下表,又知的导函数的图象如下图所示:-10451221则下列关于的命题:①为函数的一个极大值点;②函数的极小值点为2;③函数在上是减函数;④如果当时,的最大值是2,那么的最大值为4;⑤当时,函数有4个零点.其中正确命题的序号是__________.14.双曲线的焦点坐标为____________.15.设、两队进行某类知识竞赛,竞赛为四局,每局比赛没有平局,前三局胜者均得1分,第四局胜的一队得2分,各局负者都得0分,假设每局比赛队获胜的概率均为,且各局比赛相互独立,则比赛结束时队得分比队高3分的概率为__________.16.随机变量的取值为0,1,2,若,,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角的对边分别是,已知,,且.(1)求的面积;(2)若角为钝角,点为中点,求线段的长度.18.(12分)设命题:对任意,不等式恒成立,命题存在,使得不等式成立.(1)若为真命题,求实数的取值范围;(2)若为假命题,为真命题,求实数的取值范围.19.(12分)已知命题:对,函数总有意义;命题:函数在上是增函数.若命题“”为真命题且“”为假命题,求实数的取值范围.20.(12分)已知函数f(x)=2ln(1)当a=2时,求f(x)的图像在x=1处的切线方程;(2)若函数g(x)=f(x)-ax+m在[1e,e]21.(12分)为了调查患胃病是否与生活规律有关,在某地对名岁以上的人进行了调查,结果是:患胃病者生活不规律的共人,患胃病者生活规律的共人,未患胃病者生活不规律的共人,未患胃病者生活规律的共人.(1)根据以上数据列出列联表;(2)能否在犯错误的概率不超过的前提下认为“岁以上的人患胃病与否和生活规律有关系?”附:,其中.22.(10分)已知集合(1)若,求实数的值;(2)若命题命题且是的充分不必要条件,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】试题分析:如图,设抛物线方程为,交轴于点,则,即点纵坐标为,则点横坐标为,即,由勾股定理知,,即,解得,即的焦点到准线的距离为4,故选B.考点:抛物线的性质.2、C【解题分析】
根据题意得出,据此依次分析选项,综合即可得出答案.【题目详解】根据题意可知,,则,据此依次分析选项:对于A选项,若函数、都是增函数,可得图象均为上升,则函数为增函数,A选项正确;对于B选项,若函数、都是减函数,可得它们的图象都是下降的,则函数为减函数,B选项正确;对于C选项,若函数、都是奇函数,则函数不一定是奇函数,如,,可得函数不关于原点对称,C选项错误;对于D选项,若函数、都是偶函数,可得它们的图象都关于轴对称,则函数为偶函数,D选项正确.故选C.【题目点拨】本题考查分段函数的奇偶性与单调性的判定,解题时要理解题中函数的定义,考查判断这些基本性质时,可以从定义出发来理解,也可以借助图象来理解,考查分析问题的能力,属于难题.3、B【解题分析】
首先根据旋转前后的几何体,表示和,转化为在两个有公共底边的等腰三角形比较顶角的问题,还需考虑和两种特殊情况.【题目详解】如图,绕旋转形成以圆为底面的两个圆锥,(为圆心,为半径,为的中点),,,当且时,与等腰中,为公共边,,,.当时,,当时,,综上,。C.D选项比较与的大小关系,如图即比较与的大小关系,根据特殊值验证:又当时,,当时,,都不正确.故选B.【题目点拨】本题考查了二面角的相关知识,考查空间想象能力,难度较大,本题的难点是在动态的旋转过程中,如何转化和,从而达到比较的目的,或考查和两种特殊情况,可快速排除选项.4、A【解题分析】
根据相关系数的概念即可作出判断.【题目详解】∵这组样本数据的相关系数为,∴这一组数据,,…线性相关,且是负相关,∴可排除D,B,C,故选A【题目点拨】本题考查了相关系数,考查了正相关和负相关,考查了一组数据的完全相关性,是基础的概念题.5、C【解题分析】分析:根据回归直线过样本中心和条件中给出的预测值得到关于,的方程组,解方程组可得所求.详解:由题意得,又回归方程为,由题意得,解得.故选C.点睛:线性回归方程过样本中心是一个重要的结论,利用此结论可求回归方程中的参数,也可求样本数据中的参数.根据回归方程进行预测时,得到的数值只是一个估计值,解题时要注意这一点.6、A【解题分析】试题分析:由题意,得,则,故选A.考点:1、复数的运算;2、复数的几何意义.7、C【解题分析】试题分析:由于,因此函数为奇函数,,故函数的周期为4,,即,,,故答案为C考点:1、函数的奇偶性和周期性;2、对数的运算8、C【解题分析】
根据构造方程组可求得,得到解析式,根据求得结果.【题目详解】由得:,解得:由得:,解得:本题正确选项:【题目点拨】本题考查根据函数值的取值范围求解参数范围的问题,关键是能够通过函数值的等量关系求得函数解析式,从而根据函数值的范围构造出不等关系.9、D【解题分析】分析:对求导,令,即可求出函数的单调递减区间.详解:函数的定义域为,得到.故选D点睛:本题考查利用导数研究函数的单调性,属基础题.10、C【解题分析】
利用两个复数代数形式的除法法则及虚数单位的幂运算性质,化简复数到最简形式.【题目详解】解:复数,故选:.【题目点拨】本题考查两个复数代数形式的乘除法,两个复数相除,分子和分母同时除以分母的共轭复数,属于基础题.11、A【解题分析】
依据奇函数的性质,在上单调递减,可以判断出在上单调递减,进而根据单调性的定义和奇偶性的定义,即可判断的符号。【题目详解】因为时,单调递减,而且是定义在上的奇函数,所以,在上单调递减,当时,,由减函数的定义可得,,即有,故选A。【题目点拨】本题主要考查函数的奇偶性和单调性应用。12、C【解题分析】
先求,再求【题目详解】,故选C.【题目点拨】本题考查了集合的并集和补集,属于简单题型.二、填空题:本题共4小题,每小题5分,共20分。13、②③【解题分析】分析:由题意结合导函数与原函数的关系逐一考查所给的命题即可求得结果.详解:由导数图象可知,当﹣1<x<0或2<x<4时,f′(x)>0,函数单调递增,当0<x<2或4<x<5,f′(x)<0,函数单调递减,当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2),所以①错误;②③正确;因为在当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,要使当x∈[﹣1,t]函数f(x)的最大值是2,则2≤t≤5,所以t的最大值为5,所以④不正确;由f(x)=a知,因为极小值f(2)未知,所以无法判断函数y=f(x)﹣a有几个零点,所以⑤不正确.故答案为:②.点睛:本题考查了导函数与原函数的关系,函数的单调性,函数的极值与最值及零点个数问题,重点考查学生对基础概念的理解和计算能力,属于中档题.14、【解题分析】
首先将双曲线方程整理为标准方程的形式,然后求解其焦点坐标即可.【题目详解】双曲线方程即:,其中,故,由双曲线的方程可知双曲线焦点在x轴上,故焦点坐标为.故答案为:.【题目点拨】本题主要考查双曲线方程焦点的计算,属于基础题.15、【解题分析】
比赛结束时队得分比队高3分是指前3局比赛中两胜一负,第4局比赛胜,由此能求出比赛结束时队得分比队高3分的概率.【题目详解】比赛结束时队得分比队高3分是指前3局比赛中两胜一负,第4局比赛胜,比赛结束时队得分比队高3分的概率:.故答案为:.【题目点拨】本题考查概率的求法,考查次独立重复试验中事件恰好发生次的概率计算公式等基础知识,考查运算求解能力,属于基础题.16、【解题分析】设时的概率为,则,解得,故考点:方差.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)由,根据正弦定理可证得,,利用面积公式求得结果;(2)运用公式即可求得结果.【题目详解】(1),,(2)由为钝角可得,【题目点拨】本题主要考查的知识点是运用正弦定理和余弦定理求三角形边长,再运用面积公式求出三角形面积,在求解过程中要注意公式的运用,尤其是边角的互化,熟练掌握公式是本题的解题关键18、(1)(2)或【解题分析】
(1)考虑命题为真命题时,转化为对任意的成立,解出不等式可得出实数的取值范围;(2)考虑命题为真命题时,则可转化为对任意的成立,可解出实数的取值范围,然后由题中条件得出命题、一真一假,分真假和假真两种情况讨论,于此可求出实数的取值范围.【题目详解】对于成立,而,有,∴,∴存在,使得不等式成立,只需而,∴,∴;(1)若为真,则;(2)若为假命题,为真命题,则一真一假.若为假命题,为真命题,则,所以;若为假命题,为真命题,则,所以.综上,或.【题目点拨】本题考查复合命题的真假与参数的取值范围,考查不等式在区间上成立,一般转化为最值来求解,另外在判断复合命题的真假性时,需要判断简单命题的真假,考查逻辑推理能力,属于中等题.19、【解题分析】
由对数函数的性质,我们可以得到为真时,的取值范围;根据导数的符号与函数单调性的关系及基本不等式,我们可以求出为真时的取值范围;而根据“”为真且命题“”为假,可得真假,或假真,求出这两种情况下的的取值范围再求并集即可.【题目详解】解:当为真命题时,解得当为真命题时,在上恒成立,即对恒成立.又,当且仅当时等号成立,所以,所以.因为命题“”为真命题且命题“”为假命题,所以命题与命题一个为真一个为假当真假时,有解得当假真时,有解得综上,实数的取值范围是【题目点拨】本题考查的知识点是对数函数的性质,恒成立问题,导数法确定函数的单调性,复合命题的真假,属于中档题.20、(1);(2).【解题分析】试题分析:(1)求函数的导数,利用导数的几何意义即可求的图象在处的切线方程;(2)利用导数求出函数的在上的极值和最值,即可得到结论.试题解析:(1)当时,,,切点坐标为,切线的斜率,则切线方程为,即.(2),则.∵,∴当时,.当时,;当时,.故在处取得极大值.又,,,则,∴在上的最小值是.在上有两个零点的条件是,解得,∴实数的取值范围是.考点:利用导数求闭区间上函数的最值.21、(1)见解析;(2)见解析【解题分析】分析:(1)由已知作出列联表即可;
(2)由列联表,结合计算公式,求得=,,由此判断出两个量之间的关系.详解:(1)由已知可列2×2列联表:患胃病未患胃病总计生活规律20200220生活不规律60260320总计80460540(2)根据列联表中的数据,得K2的观测值,因为9.638>6.635,因此在犯错误的概率不超过0.01
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 单位管理制度范例选集【人事管理篇】十篇
- 单位管理制度呈现大合集【人力资源管理】十篇
- 《行政职业能力测验》2024年公务员考试陕西省渭南市高分冲刺试卷含解析
- 2024年公务员培训总结
- 教育科技行业话务员工作总结
- 硕士研究之路
- 电子通信行业顾问工作总结
- 2024年员工三级安全培训考试题【培优B卷】
- 2023年-2024年项目部安全培训考试题答案研优卷
- 2024年安全教育培训试题附参考答案(典型题)
- ZZ007 现代加工技术赛项正式赛题及评分标准完整版包括所有附件-2023年全国职业院校技能大赛赛项正式赛卷
- 麦肯锡:企业发展战略规划制定及实施流程教学课件
- 术中获得性压力性损伤预防
- 新课标人教版五年级数学上册总复习(全册)
- 电气接线工艺培训
- 土木工程管理与工程造价的有效控制探析获奖科研报告
- 基层版创伤中心建设指南(试行)
- 全过程造价咨询服务实施方案
- 插图幻灯片制作PPT3D小人图标幻灯素材(精)
- 室内设计装饰材料案例分析课件
- 四年级上册道德与法治第10课《我们所了解的环境污染》教学反思(部编人教版)
评论
0/150
提交评论