2024届四川省成都外国语高级中学数学高二下期末统考模拟试题含解析_第1页
2024届四川省成都外国语高级中学数学高二下期末统考模拟试题含解析_第2页
2024届四川省成都外国语高级中学数学高二下期末统考模拟试题含解析_第3页
2024届四川省成都外国语高级中学数学高二下期末统考模拟试题含解析_第4页
2024届四川省成都外国语高级中学数学高二下期末统考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省成都外国语高级中学数学高二下期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某图书出版公司到某中学开展奉献爱心图书捐赠活动,某班级获得了某品牌的图书共4本,其中数学、英语、物理、化学各一本,现将这4本书随机发给该班的甲、乙、丙、丁4个人,每人一本,并请这4个人在得到的赠书之前进行预测,结果如下:甲说:乙或丙得到物理书;乙说:甲或丙得到英语书;丙说:数学书被甲得到;丁说:甲得到物理书.最终结果显示甲、乙、丙、丁4个人的预测均不正确,那么甲、乙、丙、丁4个人得到的书分别是()A.数学、物理、化学、英语 B.物理、英语、数学、化学C.数学、英语、化学、物理 D.化学、英语、数学、物理2.函数的定义域为,且,当时,;当时,,则A.672 B.673 C.1345 D.13463.将曲线按变换后的曲线的参数方程为()A. B. C. D.4.通过随机询问110名性别不同的大学生是否爱好体育,得到如下的列联表:由公式算得:K2=≈7.8.附表:参照附表,得到的正确结论是()A.有99%以上的把握认为“爱好体育运动与性别有关”B.有99%以上的把握认为“爱好体育运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好体育运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好体育运动与性别无关”5.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的分别为10,14,则输出的()A.6 B.4 C.2 D.06.设双曲线:的左、右焦点分别为、,点在上,且满足.若满足条件的点只在的左支上,则的离心率的取值范围是()A. B. C. D.7.直线的一个方向向量是().A. B. C. D.8.若则满足条件的集合A的个数是A.6 B.7 C.8 D.99.等差数列{an}的前n项和Sn,且4≤S2≤6,15≤S4≤21,则a2的取值范围为()A. B. C. D.10.若函数在定义域内单调,则的取值范围是()A. B. C. D.11.如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占50%,苹果销量约占20%,三星销量约占30%).根据该图,以下结论中一定正确的是()A.华为的全年销量最大 B.苹果第二季度的销量大于第三季度的销量C.华为销量最大的是第四季度 D.三星销量最小的是第四季度12.已知三棱锥的顶点都在球的球面上,平面,则球的表面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知为数列的前项和,若且,设,则的值是__________.14.已知球O的半径为R,A,B,C三点在球O的球面上,球心O到平面ABC的距离为12R,AB=AC=BC=3,则球O的表面积为15.复数满足,则的最小值是___________.16.行列式的第2行第3列元素的代数余子式的值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,(1)若,证明:函数是上的减函数;(2)若曲线在点处的切线不直线平行,求a的值;(3)若,证明:(其中…是自然对数的底数).18.(12分)在平面直角坐标系中,将曲线上的每一个点的横坐标保持不变,纵坐标缩短为原来的,得到曲线,以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,的极坐标方程为.(1)求曲线的参数方程;(2)过原点且关于轴对称的两条直线与分别交曲线于和,且点在第一象限,当四边形周长最大时,求直线的普通方程.19.(12分)已知函数是奇函数().(1)求实数的值;(2)试判断函数在上的单调性,并证明你的结论;(3)若对任意的,不等式恒成立,求实数的取值范围.20.(12分)互联网正在改变着人们的生活方式,在日常消费中手机支付正逐渐取代现金支付成为人们首选的支付方式.某学生在暑期社会活动中针对人们生活中的支付方式进行了调查研究.采用调查问卷的方式对100名18岁以上的成年人进行了研究,发现共有60人以手机支付作为自己的首选支付方式,在这60人中,45岁以下的占,在仍以现金作为首选支付方式的人中,45岁及以上的有30人.(1)从以现金作为首选支付方式的40人中,任意选取3人,求这3人至少有1人的年龄低于45岁的概率;(2)某商家为了鼓励人们使用手机支付,做出以下促销活动:凡是用手机支付的消费者,商品一律打八折.已知某商品原价50元,以上述调查的支付方式的频率作为消费者购买该商品的支付方式的概率,设销售每件商品的消费者的支付方式都是相互独立的,求销售10件该商品的销售额的数学期望.21.(12分)的展开式一共有13项.(1)求展开式中二项式系数之和;(2)求展开式中的常数项22.(10分)已知函数f(x)=xex(1)求函数f(x)的极值.(2)若f(x)﹣lnx﹣mx≥1恒成立,求实数m的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

根据甲说的和丁说的都错误,得到物理书在丁处,然后根据丙说的错误,判断出数学书不在甲处,从而得到答案.【题目详解】甲说:乙或丙得到物理书;丁说:甲得到物理书.因为甲和丁说的都是错误的,所以物理书不在甲、乙、丙处,故物理书在丁处,排除A、B选项;因为丙说:数学书被甲得到,且丙说的是错误的,所以数学书不在甲处,故排除C项;所以答案选D项.【题目点拨】本题考查根据命题的否定的实际应用,属于简单题.2、D【解题分析】

根据函数周期的定义,得到函数是周期为3的周期函数,进而求得的值,进而得到,即可求解.【题目详解】根据题意,函数的定义域为,且,则函数是周期为3的周期函数,又由当时,,则,当时,,则,由函数是周期为3的周期函数,则则,所以,故选D.【题目点拨】本题主要考查了函数周期性的应用,以及函数值的计算,其中解答中根据函数周期性的定义,求得函数是周期为3的周期函数是解答的关键,着重考查了推理与运算能力,属于基础题.3、D【解题分析】由变换:可得:,代入曲线可得:,即为:令(θ为参数)即可得出参数方程.故选D.4、A【解题分析】

,则有99%以上的把握认为“爱好体育运动与性别有关”.本题选择A选项.点睛:独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.5、C【解题分析】

由程序框图,先判断,后执行,直到求出符合题意的.【题目详解】由题意,可知,,满足,不满足,则,满足,满足,则,满足,满足,则,满足,不满足,则,不满足,输出.故选C.【题目点拨】本题考查了算法和程序框图,考查了学生对循环结构的理解和运用,属于基础题.6、C【解题分析】

本题需要分类讨论,首先需要讨论“在双曲线的右支上”这种情况,然后讨论“在双曲线的左支上”这种情况,然后根据题意,即可得出结果。【题目详解】若在双曲线的右支上,根据双曲线的相关性质可知,此时的最小值为,因为满足题意的点在双曲线的左支,所以,即,所以①,若在双曲线的左支上,根据双曲线的相关性质可知,此时的最小值为,想要满足题意的点在双曲线的左支上,则需要满足,即,所以②由①②得,故选C。【题目点拨】本题考查了圆锥曲线的相关性质,主要考查了圆锥曲线中双曲线的相关性质,考查双曲线的离心率的取值范围,考查双曲线的长轴、短轴以及焦距之间的关系,考查推理能力,是中档题。7、D【解题分析】

先求得直线的斜率,由此求得直线的方向向量.【题目详解】直线的斜率为,故其方向向量为.故选:D【题目点拨】本小题主要考查直线的方向向量的求法,属于基础题.8、C【解题分析】

根据题意A中必须有1,2这两个元素,因此A的个数应为集合4,的子集的个数.【题目详解】解:,集合A中必须含有1,2两个元素,因此满足条件的集合A为,,,,,,,共8个.故选C.【题目点拨】本题考查了子集的概念,熟练掌握由集合间的关系得到元素关系是解题的关键有n个元素的集合其子集共有个9、B【解题分析】

首先设公差为,由题中的条件可得和,利用待定系数法可得,结合所求的范围及不等式的性质可得.【题目详解】设公差为,由,得,即;同理由可得.故可设,所以有,所以有,解得,即,因为,.所以,即.故选:B.【题目点拨】本题主要考查不等式的性质及等差数列的运算,利用不等式求解范围时注意放缩的尺度,运算次数越少,范围越准确.10、A【解题分析】

采用等价转化的思想,可得在恒成立,然后分离参数,对新函数的值域与比较,可得结果.【题目详解】,依题意可得:函数在定义域内只能单调递增,恒成立,即恒成立,,,故选:A【题目点拨】本题考查根据函数单调性求参数范围,熟练使用等价转化以及分离参数的方法,属基础题.11、A【解题分析】

根据图象即可看出,华为在每个季度的销量都最大,从而得出华为的全年销量最大,从而得出正确;由于不知每个季度的销量多少,从而苹果、华为和三星在哪个季度的销量大或小是没法判断的,从而得出选项,,都错误.【题目详解】根据图象可看出,华为在每个季度的销量都最大,所以华为的全年销量最大;每个季度的销量不知道,根据每个季度的百分比是不能比较苹果在第二季度和第三季度销量多少的,同样不能判断华为在哪个季度销量最大,三星在哪个季度销量最小;,,都错误,故选.【题目点拨】本题主要考查对销量百分比堆积图的理解.12、D【解题分析】

根据题意画出图形,结合图形把三棱锥补充为长方体,则该长方体的外接球即为三棱锥的外接球,计算长方体的对角线,求出外接球的直径和表面积.【题目详解】根据题意画出图形,如图所示,

以AB、BD和CD为棱,把三棱锥补充为长方体,

则该长方体的外接球即为三棱锥的外接球,

且长方体的对角线是外接球的直径;

外接球O的表面积为.

故选:D.【题目点拨】本题考查了三棱锥外接球表面积计算问题,将三棱锥补成长方体,是求外接球直径的关键,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

根据是等比数列得出,利用数列项与和的关系,求得,从而得出,利用裂项相消法求出答案.【题目详解】由可知,数列是首项为,公比为2的等比数列,所以.时,..时,.【题目点拨】该题考查的是有关数列的问题,涉及到的知识点有等比数列通项公式,数列项与和的关系,裂项相消法求和,属于简单题目.14、16π【解题分析】试题分析:设平面ABC截球所得球的小圆半径为,则2r=3sin60°=23,r=3,由考点:球的表面积.【名师点睛】球的截面的性质:用一个平面去截球,截面是一个圆面,如果截面过球心,则截面圆半径等于球半径,如果截面圆不过球心,则截面圆半径小于球半径,设截面圆半径为,球半径为R,球心到截面圆距离为R,则d=R215、【解题分析】

点对应的点在以为圆心,1为半径的圆上,要求的最小值,只要找出圆上的点到原点距离最小的点即可,求出圆心到原点的距离,最短距离要减去半径即可得解.【题目详解】解:复数满足,点对应的点在以为圆心,1为半径的圆上,要求的最小值,只要找出圆上的点到原点距离最小的点即可,连接圆心与原点,长度是,最短距离要减去半径故答案为:【题目点拨】本题考查复数的几何意义,本题解题的关键是看出复数对应的点在圆上,根据圆上到原点的最短距离得到要求的距离,属于基础题.16、-11【解题分析】

根据代数余子式列式,再求行列式得结果【题目详解】故答案为:-11【题目点拨】本题考查代数余子式,考查基本分析求解能力,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I)详见解析;(II);(III)详见解析.【解题分析】试题分析:(1)由题意二次求导可得,函数是上的减函数.(2)利用题意由导函数研究函数的切线得到关于a的方程,解方程可得.(3)原不等式等价于,结合(1)的结论构造函数,令,可证得.试题解析:(Ⅰ)当时,函数的定义域是,所以,令,只需证:时,.又,故在上为减函数,所以,所以,函数是上的减函数.(Ⅱ)由题意知,,且,所以,即有,令,,则,故是上的增函数,又,因此是的唯一零点,即方程有唯一实根,所以.(Ⅲ)因为,故原不等式等价于,由(Ⅰ)知,当时,是上的减函数,故要证原不等式成立,只需证明:当时,,令,则,在上的增函数,所以,即,故,即.18、(1)(为参数);(2)【解题分析】试题分析:(Ⅰ)首先求得的普通方程,由此可求得的参数方程;(Ⅱ)设四边形的周长为,点,然后得到与的关系式,从而利用辅助角公式求得点的直角坐标点,从而求得的普通方程.试题解析:(Ⅰ),(为参数).(Ⅱ)设四边形的周长为,设点,,且,,所以,当()时,取最大值,此时,所以,,,此时,,的普通方程为.点睛:将曲线的参数方程化为普通方程的关键是消去其中的参数,此时要注意其中的(它们都是参数的函数)的取值范围,即在消去参数的过程中一定要注意普通方程与参数方程的等价性.19、(1)(2)单调递增,见解析(3)【解题分析】

(1)根据函数是定义在上的奇函数,由求得的值.(2)由(1)求得的解析式,利用单调性的定义,任取,计算,由此证得在上递增.(3)根据的单调性和奇偶性化简不等式,得到对任意恒成立,利用一元二次不等式恒成立则其判别式为负数列不等式,解不等式求得的取值范围.【题目详解】(1)∵是奇函数在原点有定义:∴,∴;经验证满足题意(2)在上单调递增,证明如下:设,则:;∵,∴,;∴;∴是上的增函数;(3)由(1)、(2)知,是上的增函数,且是奇函数;∵,∴;∴;即对任意恒成立;只需;解之得;∴实数的取值范围为.【题目点拨】本小题主要考查根据函数的奇偶性求参数,考查利用函数单调性的定义证明函数的单调性,考查利用函数的奇偶性和单调性解不等式,考查一元二次不等式恒成立问题的求解,属于中档题.20、(1);(2)440【解题分析】

(1)先计算出选取的人中,全都是高于岁的概率,然后用减去这个概率,求得至少有人的年龄低于岁的概率.(2)首先确定“销售的10件商品中以手机支付为首选支付的商品件数”满足二项分布,求得销售额的表达式,然后利用期望计算公式,计算出销售额的期望.【题目详解】(1)设事件表示至少有1人的年龄低于45岁,则.(2)由题意知,以手机支付作为首选支付方式的概率为.设表示销售的10件商品中以手机支付为首选支付的商品件数,则,设表示

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论