2024届辽宁省四校数学高二下期末质量跟踪监视模拟试题含解析_第1页
2024届辽宁省四校数学高二下期末质量跟踪监视模拟试题含解析_第2页
2024届辽宁省四校数学高二下期末质量跟踪监视模拟试题含解析_第3页
2024届辽宁省四校数学高二下期末质量跟踪监视模拟试题含解析_第4页
2024届辽宁省四校数学高二下期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届辽宁省四校数学高二下期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的最小正周期是,若其图像向右平移个单位后得到的函数为奇函数,则函数的图像()A.关于点对称 B.关于直线对称C.关于点对称 D.关于直线对称2.从名学生志愿者中选择名学生参加活动,若采用下面的方法选取:先用简单随机抽样从人中剔除人,剩下的人再按系统抽样的方法抽取人,则在人中,每人入选的概率()A.不全相等 B.均不相等C.都相等,且为 D.都相等,且为3.甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.6,0.5,现已知目标被击中,则它是被甲击中的概率是()A.0.45 B.0.6 C.0.65 D.0.754.用反证法证明命题“设为实数,则方程至多有一个实根”时,要做的假设是A.方程没有实根 B.方程至多有一个实根C.方程至多有两个实根 D.方程恰好有两个实根5.已知实数,满足,则与的关系是()A. B. C. D.6.点是椭圆上的一个动点,则的最大值为(

)A. B. C. D.7.在《九章算术》中,将四个面都为直角三角形的三棱锥称为“鳖臑”.那么从长方体八个顶点中任取四个顶点,则这四个顶点组成的几何体是“鳖臑”的概率为()A. B. C. D.8.根据历年气象统计资料,某地四月份吹东风的概率为,下雨的概率为,既吹东风又下雨的概率为.则在下雨条件下吹东风的概率为()A. B. C. D.9.某所学校在一个学期的开支分布的饼图如图1所示,在该学期的水、电、交通开支(单位:万元)如图2所示,则该学期的电费开支占总开支的百分比为().A. B. C. D.10.已知函数,若,则A. B. C. D.11.在空间中,给出下列说法:①平行于同一个平面的两条直线是平行直线;②垂直于同一条直线的两个平面是平行平面;③若平面内有不共线的三点到平面的距离相等,则;④过平面的一条斜线,有且只有一个平面与平面垂直.其中正确的是()A.①③ B.②④ C.①④ D.②③12.若1-2x2019=a0+A.2017 B.2018 C.2019 D.2020二、填空题:本题共4小题,每小题5分,共20分。13.已知复数z=1+mi(i是虚数单位,m∈R),且(3+i)为纯虚数(是的共轭复数)则=_____14.已知等腰直角的斜边,沿斜边的高线将折起,使二面角的大小为,则四面体的外接球的表面积为__________.15.如图,在边长为1的正方形中随机撒一粒黄豆,则它落在阴影部分的概率为_______.16.已知平面向量,满足||=2,||=3,-=(,),则|+|=.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(,e为自然对数的底数).(1)若,求的最大值;(2)若在R上单调递减,①求a的取值范围;②当时,证明:.18.(12分)已知函数(且).(Ⅰ)当时,求函数的单调区间.(Ⅱ)当时,,求的取值范围.19.(12分)已知复数满足(其中为虚数单位)(1)求;(2)若为纯虚数,求实数的值.20.(12分)汽车尾气中含有一氧化碳,碳氢化合物等污染物,是环境污染的主要因素之一,汽车在使用若干年之后排放的尾气之中的污染物会出现递增的现象,所以国家根据机动车使用和安全技术、排放检验状况,对达到报废标准的机动车实施强制报废,某环境组织为了解公众对机动车强制报废标准的了解情况,随机调查了人,所得数据制成如下列联表:(1)若从这人中任选人,选到了解强制报废标准的人的概率为,问是否在犯错的概率不超过5﹪的前提下认为“机动车强制报废标准是否了解与性别有关”?(2)该环保组织从相关部门获得某型号汽车的使用年限与排放的尾气中浓度的数据,并制成如图所示的折线图,若该型号汽车的使用年限不超过年,可近似认为排放的尾气中浓度﹪与使用年限线性相关,确定与的回归方程,并预测该型号的汽车使用年排放尾气中的浓度是使用年的多少倍.附:,0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82821.(12分)已知函数.(1)若是的一个极值点,判断的单调性;(2)若有两个极值点,,且,证明:.22.(10分)某工厂共有男女员工500人,现从中抽取100位员工对他们每月完成合格产品的件数统计如下:每月完成合格产品的件数(单位:百件)频数10453564男员工人数7231811(1)其中每月完成合格产品的件数不少于3200件的员工被评为“生产能手”.由以上统计数据填写下面列联表,并判断是否有95%的把握认为“生产能手”与性别有关?非“生产能手”“生产能手”合计男员工女员工合计(2)为提高员工劳动的积极性,工厂实行累进计件工资制:规定每月完成合格产品的件数在定额2600件以内的,计件单价为1元;超出件的部分,累进计件单价为1.2元;超出件的部分,累进计件单价为1.3元;超出400件以上的部分,累进计件单价为1.4元.将这4段中各段的频率视为相应的概率,在该厂男员工中选取1人,女员工中随机选取2人进行工资调查,设实得计件工资(实得计件工资=定额计件工资+超定额计件工资)不少于3100元的人数为,求的分布列和数学期望.附:,.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

由最小正周期为可得,平移后的函数为,利用奇偶性得到,即可得到,则,进而判断其对称性即可【题目详解】由题,因为最小正周期为,所以,则平移后的图像的解析式为,此时函数是奇函数,所以,则,因为,当时,,所以,令,则,即对称点为;令,则对称轴为,当时,,故选:D【题目点拨】本题考查图象变换后的解析式,考查正弦型三角函数的对称性2、D【解题分析】

根据简单随机抽样与系统抽样方法的定义,结合概率的意义,即可判断出每个人入选的概率.【题目详解】在系统抽样中,若所给的总体个数不能被样本容量整除时,则要先剔除几个个体,然后再分组,在剔除过程中,每个个体被剔除的概率相等,所以,每个个体被抽到包括两个过程,一是不被剔除,二是选中,这两个过程是相互独立的,因此,每个人入选的概率为.故选:D.【题目点拨】本题考查简单随机抽样和系统抽样方法的应用,也考查了概率的意义,属于基础题.3、D【解题分析】根据题意,记甲击中目标为事件,乙击中目标为事件,目标被击中为事件,则.∴目标是被甲击中的概率是故选D.4、D【解题分析】

反证法证明命题时,首先需要反设,即是假设原命题的否定成立.【题目详解】命题“设为实数,则方程至多有一个实根”的否定为“设为实数,则方程恰好有两个实根”;因此,用反证法证明原命题时,只需假设方程恰好有两个实根.故选D【题目点拨】本题主要考查反证法,熟记反设的思想,找原命题的否定即可,属于基础题型.5、C【解题分析】

设,,则,对进行平方展开化简得,代入得,两式相加即可.【题目详解】设,,则且,等式两边同时平方展开得:,即令等式中,化简后可得:两式相加可得故选:C【题目点拨】本题考查了代数式的计算化简求值,考查了换元法,属于中档题6、A【解题分析】

设,由此,根据三角函数的有界性可得结果.【题目详解】椭圆方程为,设,则(其中),故,的最大值为,故选A.【题目点拨】本题主要考查椭圆参数方程的应用,辅助角公式的应用,属于中档题.利用公式可以求出:①的周期;②单调区间(利用正弦函数的单调区间可通过解不等式求得);③值域;④对称轴及对称中心(由可得对称轴方程,由可得对称中心横坐标.7、C【解题分析】

本题是一个等可能事件的概率,从正方体中任选四个顶点的选法是,四个面都是直角三角形的三棱锥有4×6个,根据古典概型的概率公式进行求解即可求得.【题目详解】由题意知本题是一个等可能事件的概率,从长方体中任选四个顶点的选法是,以A为顶点的四个面都是直角三角形的三棱锥有:共个.同理以为顶点的也各有个,但是,所有列举的三棱锥均出现次,四个面都是直角三角形的三棱锥有个,所求的概率是故选:C.【题目点拨】本题主要考查了古典概型问题,解题关键是掌握将问题转化为从正方体中任选四个顶点问题,考查了分析能力和计算能力,属于中档题.8、C【解题分析】

在下雨条件下吹东风的概率=既吹东风又下雨的概率下雨的概率【题目详解】在下雨条件下吹东风的概率为,选C【题目点拨】本题考查条件概率的计算,属于简单题.9、B【解题分析】

结合图表,通过计算可得:该学期的电费开支占总开支的百分比为×20%=11.25%,得解.【题目详解】由图1,图2可知:该学期的电费开支占总开支的百分比为×20%=11.25%,故选B.【题目点拨】本题考查了识图能力及进行简单的合情推理,属简单题.10、D【解题分析】分析:求出函数的导数,由可求得.详解:函数的导数,由可得选D.点睛:本题考查函数的导函数的概念及应用,属基础题.11、B【解题分析】

说法①:可以根据线面平行的判定理判断出本说法是否正确;说法②:根据线面垂直的性质和面面平行的判定定理可以判断出本说法是否正确;说法③:当与相交时,是否在平面内有不共线的三点到平面的距离相等,进行判断;说法④:可以通过反证法进行判断.【题目详解】①平行于同一个平面的两条直线可能平行、相交或异面,不正确;易知②正确;③若平面内有不共线的三点到平面的距离相等,则与可能平行,也可能相交,不正确;易知④正确.故选B.【题目点拨】本题考查了线线位置关系、面面位置关系的判断,分类讨论是解题的关键,反证法是经常用到的方程.12、A【解题分析】

通过对等式中的x分别赋0,1,求出常数项和各项系数和得到要求的值.【题目详解】令x=0,得a0令x=1,得-1=a所以a0故选A.【题目点拨】该题考查的是有二项展开式中系数和的有关运算问题,涉及到的知识点有应用赋值法求二项式系数和与常数项,属于简单题目.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

先求出的表达式,再由纯虚数的定义,可求出的值,进而可求出.【题目详解】由题意,,,则为纯虚数,故,解得.故,.【题目点拨】本题考查了复数代数形式的四则运算,考查了共轭复数、复数的模、纯虚数的定义,属于基础题.14、【解题分析】等腰直角翻折后是二面角的平面角,即,因此外接圆半径为,四面体的外接球半径等于,外接球的表面积为点睛:涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.15、【解题分析】

利用定积分求得阴影部分的面积,然后利用几何概型的概率计算公式,即可求解.【题目详解】由题意,结合定积分可得阴影部分的面积为,由几何概型的计算公式可得,黄豆在阴影部分的概率为.【题目点拨】本题主要考查了定积分的几何意义求解阴影部分的面积,以及几何概型及其概率的计算问题,其中解答中利用定积分的几何意义求得阴影部分的面积是解答的关键,着重考查了推理与计算能力,属于基础题.16、【解题分析】

由已知得:,可得.再利用数量积运算性质即可得出.【题目详解】由已知得:,..【题目点拨】本题主要考查了向量的模的公式应用,意在考查学生的数学运算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1;(2)①,②证明见解析.【解题分析】

(1)求出函数的导函数,利用导函数与函数单调性的关系当,求出单调递增区间,当,求出函数的单调递减区间,进而可求出最大值.(2)①求出对恒成立,化为对恒成立,记,讨论值,求出的最小值即可证出;②由题意可得,即,两边取对数可得,下面采用分析法即可证出.【题目详解】(1)时,时,,在上单调递增时,,在上单调递减(2)由①在R上单调递减,对恒成立,即对恒成立,记,则对恒成立,当时,,符题当时,时,,在上单调递减时,,在上单调递增;当时,时,,在上单调递减时,,在上单调递增;综上:②当时,在上单调递减,,,,.要证,即证下面证明令,,则,在区间上单调递增,,得证【题目点拨】本题考查了导函数在研究函数单调性的应用,分析法证明不等式,考查了分类讨论的思想,综合性比较强,属于难题.18、(Ⅰ)单调减区间为,单调增区间为(Ⅱ)k<0或k【解题分析】

(Ⅰ)求得函数的导数,根据导数的符号,即可求得函数的单调区间;(Ⅱ)当时,,当时,上不等式成立;当时,不等式等价于,设,进而令,利用导数求得函数的单调区间和最值,从而可求得的取值范围.【题目详解】(Ⅰ)由题意,函数f(x),则,当时,,当时,,所以函数的单调减区间为,单调增区间为.(Ⅱ)时,,①当时,上不等式成立,满足题设条件;②当时,,等价于,设,则,设,则,∴在[1,+∞)上单调递减,得,①当,即时,得,∴在上单调递减,得,满足题设条件;②当,即时,,而,∴,又单调递减,∴当,得,∴在上单调递增,得,不满足题设条件.综上所述,或.【题目点拨】本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.19、(1);(2).【解题分析】

(1)设,可得,解得从而可得结果;(2)由(1)知,利用为纯虚数可得,从而可得结果.【题目详解】(1)设,由于则:解得:(2)由(1)知又为纯虚数,【题目点拨】本题主要考查的是复数的分类、复数的乘法、除法运算,属于中档题.解题时一定要注意和以及运算的准确性,否则很容易出现错误.20、(1)可以在犯错的概率不超过5﹪的前提下认为“机动车强制报废标准是否了解与性别有关”(2);预测该型号的汽车使用12年排放尾气中的浓度是使用4年的4.2倍.【解题分析】

(1)根据题意计算,再利用,计算出,对照临界值得出结论;(2)由公式计算出,可得y关于t的回归方程,把t=12代入回归方程中,可预测该型号的汽车使用12年排放尾气中的浓度,即得。【题目详解】(1)设“从100人中任选1人,选到了解机动车强制报废标准的人”为事件,由已知得,解得,所以,,.假设:机动车强制报废标准是否了解与性别无关.由2×2列联表可知,的观测值,∴可以在犯错的概率不超过5﹪的前提下认为“机动车强制报废标准是否了解与性别有关”(2)由折线图中所给数据计算,得,,故,,所以所求回归方程为.故预测该型号的汽车使用12年排放尾气中的浓度为,因为使用4年排放尾气中的浓度为,所以预测该型号的汽车使用12年排放尾气中的浓度是使用4年的4.2倍.【题目点拨】本题考查列联表与独立性检验的应用,以及线性回归方程的求法,解题的关键是熟练掌握公式,考查学生基本的计算能力,属于中档题。21、(1)在单调递减,在单调递增.(2)见解析【解题分析】

(1)求出导函数,由极值点求出参数,确定的正负得的单调性;(2)求出,得极值点满足:所以,由(1)即,不妨设.要证,则只要证,而,因此由的单调性,只要能证,即即可.令,利用导数的知识可证得结论成立.【题目详解】(1)由已知得.因为是的一个极值点,所以,即,所以,令,则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论