2024届河南省郸城县第二高级中学数学高二第二学期期末学业质量监测模拟试题含解析_第1页
2024届河南省郸城县第二高级中学数学高二第二学期期末学业质量监测模拟试题含解析_第2页
2024届河南省郸城县第二高级中学数学高二第二学期期末学业质量监测模拟试题含解析_第3页
2024届河南省郸城县第二高级中学数学高二第二学期期末学业质量监测模拟试题含解析_第4页
2024届河南省郸城县第二高级中学数学高二第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省郸城县第二高级中学数学高二第二学期期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定积分()A.1 B.2 C.3 D.42.(+)(2-)5的展开式中33的系数为A.-80 B.-40 C.40 D.803.某班共有52人,现根据学生的学号,用系统抽样的方法抽取一个容量为4的样本.已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是()A.10 B.11 C.12 D.164.三世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法.所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率的方法.如图是刘徽利用正六边形计算圆周率时所画的示意图,现向圆中随机投掷一个点,则该点落在正六边形内的概率为()A. B. C. D.5.以为焦点的抛物线的标准方程是()A. B. C. D.6.己知命题P:单位向量的方向均相同,命题q:实数a的平方为负数。则下列说法正确的是A.是真命题 B.是真命题 C.是假命题 D.是假命题7.已知,,,则的最大值为()A.1 B. C. D.8.用反证法证明“方程至多有两个解”的假设中,正确的是()A.至少有两个解 B.有且只有两个解C.至少有三个解 D.至多有一个解9.某地区气象台统计,该地区下雨的概率是,刮风的概率为,既刮风又下雨的概率为,则在下雨天里,刮风的概率为()A. B. C. D.10.以双曲线的焦点为顶点,离心率为的双曲线的渐近线方程是()A. B.C. D.11.对相关系数,下列说法正确的是()A.越大,线性相关程度越大B.越小,线性相关程度越大C.越大,线性相关程度越小,越接近0,线性相关程度越大D.且越接近1,线性相关程度越大,越接近0,线性相关程度越小12.函数的定义域为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设圆x2+y2=1上的动点P到直线3x+4y﹣10=0的距离为d,则d的最大值为_____.14.棱长为的正四面体的高为__________.15.已知向量与的夹角为,且,,则向量在向量方向上的投影为________.16.设随机变量ξ的概率分布列为P(ξ=k)=ck+1,k=0,1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设{an}是等差数列,a1=–10,且a2+10,a3+8,a4+6成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)记{an}的前n项和为Sn,求Sn的最小值.18.(12分)某园林基地培育了一种新观赏植物,经过了一年的生长发育,技术人员从中抽取了部分植株的高度(单位:厘米)作为样本(样本容量为)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分组做出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了高度在[50,60),[90,100]的数据).1)求样本容量和频率分布直方图中的2)在选取的样本中,从高度在80厘米以上(含80厘米)的植株中随机抽取3株,设随机变量表示所抽取的3株高度在[80,90)内的株数,求随机变量的分布列及数学期望.19.(12分)某市为迎接“国家义务教育均衡发展”综合评估,市教育行政部门在全市范围内随机抽取了所学校,并组织专家对两个必检指标进行考核评分.其中分别表示“学校的基础设施建设”和“学校的师资力量”两项指标,根据评分将每项指标划分为(优秀)、(良好)、(及格)三个等级,调查结果如表所示.例如:表中“学校的基础设施建设”指标为等级的共有所学校.已知两项指标均为等级的概率为0.21.(1)在该样本中,若“学校的基础设施建设”优秀率是0.4,请填写下面列联表,并根据列联表判断是否有的把握认为“学校的基础设施建设”和“学校的师资力量”有关;师资力量(优秀)师资力量(非优秀)合计基础设施建设(优秀)基础设施建设(非优秀)合计(2)在该样本的“学校的师资力量”为等级的学校中,若,记随机变量,求的分布列和数学期望.附:20.(12分)已知函数,其中,且曲线在点处的切线平行于轴.(1)求实数的值;(2)求函数的单调区间.21.(12分)已知点A是椭圆的上顶点,斜率为的直线交椭圆E于A、M两点,点N在椭圆E上,且;(1)当时,求的面积;(2)当时,求证:.22.(10分)已知函数,,.(1)若,求不等式的解集;(2)若对任意,不等式恒成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

直接利用定积分公式计算得到答案.【题目详解】.故选:.【题目点拨】本题考查了定积分,意在考查学生的计算能力.2、C【解题分析】,由展开式的通项公式可得:当时,展开式中的系数为;当时,展开式中的系数为,则的系数为.故选C.【名师点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.3、D【解题分析】

由题计算出抽样的间距为13,由此得解.【题目详解】由题可得,系统抽样的间距为13,则在样本中.故选D【题目点拨】本题主要考查了系统抽样知识,属于基础题.4、A【解题分析】设圆的半径为,则圆的面积,正六边形的面积,所以向圆中随机投掷一个点,该点落在正六边形内的概率,故选A.5、A【解题分析】

由题意和抛物线的性质判断出抛物线的开口方向,并求出的值,即可写出抛物线的标准方程.【题目详解】因为抛物线的焦点坐标是,

所以抛物线开口向右,且=2,

则抛物线的标准方程.

故选:A.【题目点拨】本题考查抛物线的标准方程以及性质,属于基础题.6、D【解题分析】

先判断命题P,命题q均为假.再逐项判断每个选项的正误.【题目详解】命题P:单位向量的方向可以是任意的,假命题命题q:实数a的平方为非负数,假命题为假命题,A错误为假命题,B错误是真命题,C错误是假命题,D正确故答案选D【题目点拨】本题考查了命题的判断,正确判断命题的正误是解决此类题型的关键.7、D【解题分析】

直接使用基本不等式,可以求出的最大值.【题目详解】因为,,,所以有,当且仅当时取等号,故本题选D.【题目点拨】本题考查了基本不等式的应用,掌握公式的特征是解题的关键.8、C【解题分析】分析:把要证的结论进行否定,得到要证的结论的反面,即为所求.详解:由于用反证法证明数学命题时,应先假设命题的否定成立,

命题:“方程ax2+bx+c=0(a≠0)至多有两个解”的否定是:“至少有三个解”,

故选C.点睛:本题主要考查用命题的否定,反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于中档题.9、D【解题分析】分析:根据条件概率求结果.详解:因为在下雨天里,刮风的概率为既刮风又下雨的概率除以下雨的概率,所以在下雨天里,刮风的概率为,选D.点睛:本题考查条件概率,考查基本求解能力.10、D【解题分析】

由题求已知双曲线的焦点坐标,进而求出值即可得答案。【题目详解】由题可知双曲线的焦点坐标为,则所求双曲线的顶点坐标为,即,又因为离心率为,所以,解得,所以,即,所以渐近线方程是故选D【题目点拨】本题考查求双曲线的渐近线方程,解题的关键是判断出焦点位置后求得,属于简单题。11、D【解题分析】

根据两个变量之间的相关系数r的基本特征,直接选出正确答案即可.【题目详解】用相关系数r可以衡量两个变量之间的相关关系的强弱,|r|≤1,r的绝对值越接近于1,表示两个变量的线性相关性越强,r的绝对值接近于0时,表示两个变量之间几乎不存在相关关系,故选D.【题目点拨】本题考查两个变量之间相关系数的基本概念应用问题,是基础题目.12、D【解题分析】

分析每个根号下的范围,取交集后得到定义域.【题目详解】因为,所以,则定义域为.故选:D.【题目点拨】本题考查函数含根号的函数定义问题,难度较易.注意根号下大于等于零即可.二、填空题:本题共4小题,每小题5分,共20分。13、3【解题分析】

将问题转化为求圆心到直线的距离加上半径,再由点到直线的距离公式可得结果.【题目详解】依题意可知,圆x2+y2=1上的动点P到直线3x+4y﹣10=0的距离的最大值等于圆心到直线的距离加上半径,因为圆心到直线为,圆的半径为1,所以的最大值为.故答案为:.【题目点拨】本题考查了点到直线的距离公式,属于基础题.14、【解题分析】

利用正弦定理计算出正四面体底面三角形的外接圆半径,再利用公式可得出正四面体的高.【题目详解】设正四面体底面三角形的外接圆的半径为,由正弦定理得,,因此,正四面体的高为,故答案为.【题目点拨】本题考查正四面体高的计算,解题时要充分分析几何体的结构,结合勾股定理进行计算,考查空间想象能力,属于中等题.15、【解题分析】

由题知,,再根据投影的概念代入计算即可.【题目详解】,,所以向量在向量方向上的投影为.故答案为:【题目点拨】本题主要考查了向量模的坐标计算,投影的概念与计算.16、【解题分析】∵所有事件发生的概率之和为1,即P(ξ=0)+P(ξ=1)+P(ξ=2)+P(ξ=3)=1,∴,∴c=1225,∴P(ξ=k)=1225(k+1),∴P(ξ=2)=.故答案为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解题分析】

(Ⅰ)由题意首先求得数列的公差,然后利用等差数列通项公式可得的通项公式;(Ⅱ)首先求得的表达式,然后结合二次函数的性质可得其最小值.【题目详解】(Ⅰ)设等差数列的公差为,因为成等比数列,所以,即,解得,所以.(Ⅱ)由(Ⅰ)知,所以;当或者时,取到最小值.【题目点拨】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.18、(1)见解析;(2)见解析.【解题分析】分析:(1)由茎叶图及频率分布直方图能求出样本容量n和频率分布直方图中的x,y;(2)由题意可知,高度在[80,90)内的株数为5,高度在[90,100]内的株数为2,共7株.抽取的3株中高度在[80,90)内的株数的可能取值为1,2,3,分别求出相应的概率,由此能求出X的分布列和期望.详解:(1)由题意可知,样本容量,.(2)由题意可知,高度在[80,90)内的株数为5,高度在[90,100]内的株数为2,共7株.抽取的3株中高度在[80,90)内的株数的可能取值为1,2,3,则,,.123故.点睛:本题考查概率的求法,考查离散型随机变量的分布列及数学期望的求法,考查推理论证能力、运算求解能力、数据处理能力,考查化归与转化思想.19、(1)见解析;(2)见解析.【解题分析】

(1)依题意求得n、a和b的值,填写列联表,计算K2,对照临界值得出结论;(2)由题意得到满足条件的(a,b),再计算ξ的分布列和数学期望值.【题目详解】(Ⅰ)依题意得,得由,得由得师资力量(优秀)师资力量(非优秀)基础设施建设(优秀)2021基础设施建设(非优秀)2039.因为,所以没有90﹪的把握认为“学校的基础设施建设”和“学校的师资力量”有关.(Ⅱ),,得到满足条件的有:,,,,故的分布列为1357故【题目点拨】本题主要考查了独立性检验和离散型随机变量的分布列与数学期望问题,属于中档题.20、(1)(2)单调增区间为:函数单调减区间为【解题分析】

(1)根据题可知,由此计算出的值;(2)写出并因式分解,讨论取何范围能使,由此求出单调递增、递减区间.【题目详解】(1)由题意,曲线在点处的切线斜率为0.,,所以;(2)由(1)知,,,当时,,当时,,当时,,所以函数单调增区间为:;函数单调减区间为:.【题目点拨】本题考查导数的几何意义的运用以及求解具体函数的单调区间,难度较易.已知曲线某点处切线斜率求解参数时,可通过先求导,然后根据对应点处切线斜率等于导数值求解出参数.21、(1)(2)证明见解析【解题分析】

(1)由椭圆对称性确定直线斜率为1,斜率为-1,求出点坐标后可得三角形面积;(2)由直线方程为求得点坐标(横坐标即可),得,同理得(直线斜率为),利用得的方程,利用函数的知识(导数)证明此方程的解在区间上.【题目详解】(1)由椭圆对称性知点M、N的纵坐标相等,横坐标互为相反数,且,由题意,,方程为,于是可以设点其中,于是,解得,所以.(2)据题意,直线,联立椭圆E,得:,即:,则,那么,同理,知:,由,得:,即:.令,则,所以单调增,又,,故存在唯一零点,即.【题目点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论