版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省玉溪市江川一中高二数学第二学期期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“因为偶函数的图象关于轴对称,而函数是偶函数,所以的图象关于轴对称”.在上述演绎推理中,所以结论错误的原因是()A.大前提错误 B.小前提错误C.推理形式错误 D.大前提与推理形式都错误2.已知经过,两点的直线AB与直线l垂直,则直线l的倾斜角是()A.30° B.60° C.120° D.150°3.已知随机变量服从正态分布,且,则()A.-2 B.2 C.4 D.64.设为虚数单位,复数满足,则A.1 B. C.2 D.5.设地球的半径为R,地球上A,B两地都在北纬45∘的纬度线上去,且其经度差为90∘,则A,A.πR B.πR2 C.πR36.将三枚骰子各掷一次,设事件为“三个点数都不相同”,事件为“至少出现一个6点”,则概率的值为()A. B. C. D.7.从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件“第一次取到的是偶数”,“第二次取到的是偶数”,则()A. B. C. D.8.下列结论错误的是()A.命题“若p,则q”与命题“若¬q,则¬p”互为逆否命题B.命题p:,,命题q:,,则“”为真C.“若,则”的逆命题为真命题D.命题P:“,使得”的否定为¬P:“,9.在200件产品中有3件次品,现从中任意抽取5件,其中至少有2件次品的抽法有()A.种 B.种 C.种 D.种10.一张储蓄卡的密码共有位数字,每位数字都可以是中的任意一个.某人在银行自动取款机上取钱时,忘记了密码的最后一位数字,任意按最后一位数字,则不超过次就按对的概率为()A. B. C. D.11.已知是虚数单位,,则计算的结果是()A. B. C. D.12.对于两个平面和两条直线,下列命题中真命题是()A.若,则 B.若,则C.若,则 D.若,则二、填空题:本题共4小题,每小题5分,共20分。13.某晚会安排5个摄影组到3个分会场负责直播,每个摄影组去一个分会场,每个分会场至少安排一个摄影组,则不同的安排方法共有______种(用数字作答).14.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答)15.满足不等式组的点所围成的平面图形的面积为________.16.函数的极值点为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设对于任意实数x,不等式|x+7|+|x-1|≥m恒成立.(1)求m的取值范围;(2)当m取最大值时,解关于x的不等式|x-3|-2x≤2m-12.18.(12分)如图,在四棱锥中,底面是矩形,平面,,是的中点.(1)求三棱锥的体积;(2)求异面直线和所成的角(结果用反三角函数值表示)19.(12分)在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)设点,直线与曲线交于不同的两点,,求的值.20.(12分)已知抛物线与直线相交于A、B两点,点O是坐标原点.(Ⅰ)求证:OAOB;(Ⅱ)当△OAB的面积等于时,求t的值.21.(12分)如图,四边形为菱形,,平面,,,为的中点.(Ⅰ)求证:平面(Ⅱ)求证:(Ⅲ)若为线段上的点,当三棱锥的体积为时,求的值.22.(10分)已知函数.(1)若函数上是减函数,求实数a的最小值;(2)若,使()成立,求实数a的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】分析:因为函数不是偶函数,是一个非奇非偶函数,所以小前提错误.详解:因为,所以,所以函数f(x)不是偶函数,所以小前提错误.故答案为:B.点睛:本题主要考查演绎推理中的三段论和函数奇偶性的判断,意在考查学生对这些知识的掌握水平.2、B【解题分析】
首先求直线的斜率,再根据两直线垂直,求直线的斜率,以及倾斜角.【题目详解】,,,直线l的倾斜角是.故选B.【题目点拨】本题考查了两直线垂直的关系,以及倾斜角和斜率的基本问题,属于简单题型.3、D【解题分析】分析:由题意知随机变量符合正态分布,又知正态曲线关于对称,得到两个概率相等的区间关于对称,得到关于的方程,解方程求得详解:由题随机变量服从正态分布,且,则与关于对称,则故选D.点睛:本题主要考查正态分布曲线的特点及曲线所表示的意义、函数图象对称性的应用等基础知识,属于基础题.4、B【解题分析】
利用复数代数形式的乘除运算,再由复数的模的计算公式求解即可.【题目详解】由,得,,故选.【题目点拨】本题主要考查复数代数形式的乘除运算以及复数的模的计算.5、C【解题分析】分析:设在北纬45∘纬圆的圆心为C,球心为O,连结OA,OB,OC,AC,BC,根据地球纬度的定义,算出小圆半径AC=BC=2R2,由A,B两地经度差为90∘,在RtΔABC中算出AB=AC详解:设在北纬45∘纬圆的圆心为C,球心为O连结OA,OB,OC,AC,BC,则OC⊥平面ABC,在RtΔACO中,AC=OACcos45∘∴A,B两地经度差为90∘,∴∠ACB=在RtΔABC中,AB=A由此可得ΔAOB是边长为R的等边三角形,得∠AOB=60∴A,B两地球面的距离是60πR180=π点睛:本题考查地球上北纬45∘圆上两点球的距离,着重考查了球面距离及相关计算,经纬度等基础知识,考查运算求解能力,考查空间想象能力,属于中档题6、A【解题分析】考点:条件概率与独立事件.分析:本题要求条件概率,根据要求的结果等于P(AB)÷P(B),需要先求出AB同时发生的概率,除以B发生的概率,根据等可能事件的概率公式做出要用的概率.代入算式得到结果.解:∵P(A|B)=P(AB)÷P(B),P(AB)==P(B)=1-P()=1-=1-=∴P(A/B)=P(AB)÷P(B)==故选A.7、B【解题分析】分析:事件A发生后,只剩下8个数字,其中只有3个偶数字,由古典概型概率公式可得.详解:在事件A发生后,只有8个数字,其中只有3个偶数字,∴.故选B.点睛:本题考查条件概率,由于是不放回取数,因此事件A的发生对B的概率有影响,可考虑事件A发生后基本事件的个数与事件B发生时事件的个数,从而计算概率.8、C【解题分析】
由逆否命题的定义即可判断A;由指数函数的单调性和二次函数的值域求法,可判断B;由命题的逆命题,可得m=0不成立,可判断C;运用命题的否定形式可判断D.【题目详解】解:命题“若p则q”与命题“若¬q则¬p”互为逆否命题,故A正确;命题,,由,可得p真;命题,,由于,则q假,则“”为真,故B正确;“若,则”的逆命题为“若,则”错误,如果,不成立,故C不正确;命题P:“,使得”的否定为¬P:“,”,故D正确.故选:C.【题目点拨】本题考查四种命题和命题的否定,考查判断能力和运算能力,属于基础题.9、D【解题分析】分析:据题意,“至少有2件次品”可分为“有2件次品”与“有3件次品”两种情况,由组合数公式分别求得两种情况下的抽法数,进而相加可得答案.详解:根据题意,“至少有2件次品”可分为“有2件次品”与“有3件次品”两种情况,“有2件次品”的抽取方法有C32C1973种,“有3件次品”的抽取方法有C33C1972种,则共有C32C1973+C33C1972种不同的抽取方法,故选:D.点睛:本题考查组合数公式的运用,解题时要注意“至少”“至多”“最多”“最少”等情况的分类讨论.10、B【解题分析】
利用互斥事件概率加法公式和相互独立事件概率乘法公式直接求解,即可求得答案.【题目详解】设第次按对密码为事件第一次按对第一次按错,第二次按对第一次按错,第二次按错,第三次按对事件,事件,事件是互斥,任意按最后一位数字,则不超过次就按对的概率由概率的加法公式得:故选:C.【题目点拨】本题考查概率的求法,考查互斥事件概率加法公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.11、A【解题分析】
根据虚数单位的运算性质,直接利用复数代数形式的除法运算化简求值.【题目详解】解:,,故选A.【题目点拨】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.12、D【解题分析】
根据线面平行垂直的位置关系判断.【题目详解】A中可能在内,A错;B中也可能在内,B错;与可能平行,C错;,则或,若,则由得,若,则内有直线,而易知,从而,D正确.故选D.【题目点拨】本题考查线面平行与垂直的关系,在说明一个命题是错误时可举一反例.说明命题是正确时必须证明.二、填空题:本题共4小题,每小题5分,共20分。13、150【解题分析】
根据题意,先将5个摄影组可分为三队,分队的方式有2种:(1,1,3)和(1,2,2),再进行排列,由分类计数原理计算可得答案.【题目详解】根据题意,5个摄影组可分为三队,分队的方式有2种:(1,1,3)和(1,2,2),①按(1,1,3)进行分队有种,再分配到3个分会场,共有种;②按(1,2,2)进行分队有种,再分配到3个分会场,共有种;再进行相加,共计60+90=150种,故答案为:150.【题目点拨】本题考查排列、组合的实际应用问题,考查分类、分步计数原理的灵活应用,属于中等题.14、660【解题分析】
第一类,先选女男,有种,这人选人作为队长和副队有种,故有种;第二类,先选女男,有种,这人选人作为队长和副队有种,故有种,根据分类计数原理共有种,故答案为.15、.【解题分析】分析:画出约束条件表示的可行域,利用微积分基本定理求出可行域的面积.详解:画出约束条件表示的可行域,如图中阴影部分,由题意不等式组,表示的平面图形的面积为:.故答案为.点睛:用定积分求平面图形的面积的步骤:(1)根据已知条件,作出平面图形的草图;根据图形特点,恰当选取计算公式;(2)解方程组求出每两条曲线的交点,以确定积分的上、下限;(3)具体计算定积分,求出图形的面积.16、1【解题分析】
求出导函数,并求出导函数的零点,研究零点两侧的符号,由此可得.【题目详解】,由得,函数定义域是,当时,,当时,.∴是函数的极小值点.故答案为1.【题目点拨】本题考查函数的极值,一般我们可先,然后求出的零点,再研究零点两侧的正负,从而可确定是极大值点还是极小值点.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】试题分析:解:(1)根据题,由于不等式|x+7|+|x-1|≥m恒成立,则可知|x+7|+|x-1|≥|x+7-x+1|≥8故2)由已知,不等式化为或由不等式组解得:由不等式组解得:原不等式的解集为考点:绝对值不等式点评:主要是考查了绝对值不等式的求解以及不等式的恒成立问题的运用,属于基础题.18、(1);(2).【解题分析】
(1)利用三棱锥的体积计算公式即可得出;(2)由于,可得或其补角为异面直线和所成的角,由平面,可得,再利用直角三角形的边角关系即可得出【题目详解】(1)平面,底面ABCD是矩形,高,,,,故(2),或其补角为异面直线和所成的角,又平面ABCD,,又,平面PAB,,于是在中,,,,异面直线和所成的角是【题目点拨】本题考查三棱锥体积公式的计算,异面直线所成的夹角,属于基础题19、(1);(2).【解题分析】
(1)将曲线的极坐标方程转化为由此可求出曲线的直角坐标方程;(2)将直线参数方程代入到中,设,对应的参数分别为,,利用韦达定理能求出的值.【题目详解】解:(1)根据极坐标与直角坐标之间的相互转化,曲线的极坐标方程为,则,即.故曲线的直角坐标方程为.(2)直线的普通方程为,点在直线上,且倾斜角为,将直线参数方程(为参数),代入到曲线的直角坐标方程得:,设,对应的参数分别为,,则,由曲线的几何意义知:.【题目点拨】本题考查曲线的极坐标方程,考查两线段长的平方和的求法,考查运算求解能力,考查与化归转化思想,是中档题.20、(I)见解析;(II)【解题分析】
(Ⅰ)联立抛物线与直线方程,得到关于的一元二次方程,进而应用根与系数的关系即可证明OAOB;(Ⅱ)利用(Ⅰ)的结论,建立的方程,即可得到答案.【题目详解】(I)由,设,则.∴∴(II)设与x轴交于E,则,∴,解得:【题目点拨】本题考查直线与抛物线的位置关系,抛物线的性质的知识点,直线和抛物线的位置关系,可通过直线方程与抛物线方程组成的方程组的实数解的个数来确定,同时注意过焦点的弦的一些性质,属于中档题.21、(1)证明见解析.(2)证明见解析.(3).【解题分析】分析:(1)设AC∩BD=O,连结EO,MO,推导出四边形EOMF为平行四边形,从而FM∥EO.由此能证明FM∥平面BDE;(2)推导出AC⊥BD,ED⊥AC,从而AC⊥平面BDE,由此能证明AC⊥BE;(Ⅲ)过
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年全球及中国成人电动踏板车行业头部企业市场占有率及排名调研报告
- 2025-2030全球聚酯树脂行业调研及趋势分析报告
- 2025年全球及中国中心供氧站行业头部企业市场占有率及排名调研报告
- 大数据分析服务项目合同
- 2025合同模板股权合作协议范本
- 2025企业管理资料劳务合同样本页文档范本
- 钢质防火门制作安装合同
- 中介公司房产交易合同范本
- 奶牛场承包经营合同
- 销售回购合同
- 多图中华民族共同体概论课件第十三讲先锋队与中华民族独立解放(1919-1949)根据高等教育出版社教材制作
- 高考英语单词3500(乱序版)
- 《社区康复》课件-第五章 脊髓损伤患者的社区康复实践
- 北方、南方戏剧圈的杂剧文档
- 灯谜大全及答案1000个
- 白酒销售经理述职报告
- 部编小学语文(6年级下册第6单元)作业设计
- 洗衣机事业部精益降本总结及规划 -美的集团制造年会
- 2015-2022年湖南高速铁路职业技术学院高职单招语文/数学/英语笔试参考题库含答案解析
- 2023年菏泽医学专科学校单招综合素质模拟试题及答案解析
- 铝合金门窗设计说明
评论
0/150
提交评论