百师联盟山东卷2024届高二数学第二学期期末教学质量检测试题含解析_第1页
百师联盟山东卷2024届高二数学第二学期期末教学质量检测试题含解析_第2页
百师联盟山东卷2024届高二数学第二学期期末教学质量检测试题含解析_第3页
百师联盟山东卷2024届高二数学第二学期期末教学质量检测试题含解析_第4页
百师联盟山东卷2024届高二数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

百师联盟山东卷2024届高二数学第二学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设:实数,满足,且;:实数,满足;则是的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知随机变量服从正态分布,若,则等于()A.B.C.D.3.已知,且,函数的图象的相邻两条对称轴之间的距离等于,则的值为()A. B. C. D.4.某市委积极响应十九大报告提出的“到2020年全面建成小康社会”的目标,鼓励各县积极脱贫,计划表彰在农村脱贫攻坚战中的杰出村代表,已知A,B两个贫困县各有15名村代表,最终A县有5人表现突出,B县有3人表现突出,现分别从A,B两个县的15人中各选1人,已知有人表现突出,则B县选取的人表现不突出的概率是()A. B. C. D.5.函数图象的大致形状是()A. B. C. D.6.的展开式中的常数项为()A. B. C. D.7.已知集合,,则=()A. B. C. D.8.已知关于的方程为(其中),则此方程实根的个数为()A.2 B.2或3 C.3 D.3或49.设随机变量,若,则()A. B. C. D.10.设函数的极小值为,则下列判断正确的是A. B.C. D.11.设随机变量ξ~N(μ,σ2),函数f(x)=x2+4x+ξ没有零点的概率是0.5,则μ等于()A.1 B.4 C.2 D.不能确定12.在中,,若,则A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在中,,,是内一动点,,则的最小值为____________.14.按照国家标准规定,袋装奶粉每袋质量必须服从正态分布,经检测某种品牌的奶粉,一超市一个月内共卖出这种品牌的奶粉400袋,则卖出的奶粉质量在以上袋数大约为________15.函数的最小值为__________.16.若命题:是真命题,则实数的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数f(x)=|x﹣a|+2a,且不等式f(x)≤4的解集为{x|﹣1≤x≤3}.(1)求实数a的值.(2)若存在实数x0,使f(x0)≤5m2+m﹣f(﹣x0)成立,求实数m的取值范围.18.(12分)已知函数.(I)求曲线在点处的切线方程.(Ⅱ)若直线为曲线的切线,且经过原点,求直线的方程及切点坐标.19.(12分)已知函数.(Ⅰ)若,求函数的单调区间;(Ⅱ)若在上恒成立,求实数的取值范围.20.(12分)已知数列满足,,.(1)求,,;(2)判断数列是否为等比数列,并说明理由.21.(12分)已知函数.(1)若曲线在处的切线过点,求的值;(2)是否存在实数,使恒成立?若存在,求出的值;若不存在,请说明理山.22.(10分)在二项式的展开式中.(1)若展开式后三项的二项式系数的和等于67,求展开式中二项式系数最大的项;(2)若为满足的整数,且展开式中有常数项,试求的值和常数项.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

利用充分必要性定义及不等式性质即可得到结果.【题目详解】当,且时,显然成立,故充分性具备;反之不然,比如:a=100,b=0.5满足,但推不出,且,故必要性不具备,所以是的充分不必要条件.故选A【题目点拨】本题考查了不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.2、B【解题分析】根据正态分布密度曲线的对称性可知,若,函数的对称轴是,所以,故选B.3、B【解题分析】试题分析:根据函数的图象的相邻两条对称轴之间的距离等于,可得.由,且,可得,∴,则,故选B.考点:正弦函数的图象.4、B【解题分析】

由古典概型及其概率计算公式得:有人表现突出,则县选取的人表现不突出的概率是,得解.【题目详解】由已知有分别从,两个县的15人中各选1人,已知有人表现突出,则共有种不同的选法,又已知有人表现突出,且县选取的人表现不突出,则共有种不同的选法,已知有人表现突出,则县选取的人表现不突出的概率是.故选:B.【题目点拨】本题考查条件概率的计算,考查运算求解能力,求解时注意与古典概率模型的联系.5、B【解题分析】

利用奇偶性可排除A、C;再由的正负可排除D.【题目详解】,,故为奇函数,排除选项A、C;又,排除D,选B.故选:B.【题目点拨】本题考查根据解析式选择图象问题,在做这类题时,一般要结合函数的奇偶性、单调性、对称性以及特殊点函数值来判断,是一道基础题.6、C【解题分析】

化简二项式的展开式,令的指数为零,求得常数项.【题目详解】二项式展开式的通项为,令,故常数项为,故选C.【题目点拨】本小题主要考查二项式展开式的通项公式,考查二项式展开式中的常数项,属于基础题.7、B【解题分析】

利用集合的基本运算定义即可求出答案【题目详解】已知集合,,利用集合的基本运算定义即可得:答案:B【题目点拨】本题考查集合的基本运算,属于基础题8、C【解题分析】分析:将原问题转化为两个函数交点个数的问题,然后利用导函数研究函数的性质即可求得最终结果.详解:很明显不是方程的根,据此可将方程变形为:,原问题等价于考查函数与函数的交点的个数,令,则,列表考查函数的性质如下:++-++单调递增单调递增单调递减单调递减单调递增函数在有意义的区间内单调递增,故的单调性与函数的单调性一致,且函数的极值绘制函数图像如图所示,观察可得,与函数恒有3个交点,即题中方程实根的个数为3.本题选择C选项.点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.9、A【解题分析】

根据对立事件的概率公式,先求出,再依二项分布的期望公式求出结果【题目详解】,即,所以,,故选A.【题目点拨】本题主要考查二项分布的期望公式,记准公式是解题的关键.10、D【解题分析】

对函数求导,利用求得极值点,再检验是否为极小值点,从而求得极小值的范围.【题目详解】令,得,检验:当时,,当时,,所以的极小值点为,所以的极小值为,又.∵,∴,∴.选D.【题目点拨】本题考查利用导数判断单调性和极值的关系,属于中档题.11、B【解题分析】试题分析:由题中条件:“函数f(x)=x2+4x+ξ没有零点”可得ξ>4,结合正态分布的图象的对称性可得μ值.解:函数f(x)=x2+4x+ξ没有零点,即二次方程x2+4x+ξ=0无实根得ξ>4,∵函数f(x)=x2+4x+ξ没有零点的概率是0.5,∴P(ξ>4)=0.5,由正态曲线的对称性知μ=4,故选B.考点:正态分布曲线的特点及曲线所表示的意义.12、A【解题分析】

根据平面向量的线性运算法则,用、表示出即可.【题目详解】即:本题正确选项:【题目点拨】本题考查平面向量的加法、减法和数乘运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

设,,,在中,由正弦定理,得,,在中,,,其中,,从而,由最小值为的最小值为,故答案为.14、10【解题分析】

根据正态分布曲线的特征,计算出的概率,然后再根据总体计算出满足要求的袋数.【题目详解】因为且,所以,所以以上袋数大约为:袋.故答案为10.【题目点拨】本题考查正态分布曲线的对称性,难度较易.正态分布曲线是一个对称图象,对称轴即为也就是均值,计算相应概率时可借助对称性计算.15、3【解题分析】

对函数求导,然后判断单调性,再求出最小值即可.【题目详解】∵,∴(),令,解得,令,解得即原函数在递减,在递增,故时取得最小值3,故答案为3.【题目点拨】本题主要考查了利用导数研究函数的单调性和最值,正确求导是解题的关键,属于基础题.16、.【解题分析】试题分析:命题:“对,”是真命题.当时,则有;当时,则有且,解得.综上所示,实数的取值范围是.考点:1.全称命题;2.不等式恒成立三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)a=1(2)(﹣∞,]∪[1,+∞)【解题分析】

(1)解不等式f(x)≤4,根据其解集,得到的值;(2)将所求不等式转化为5m2+m≥[f(x)+f(﹣x)]min,得到f(x)+f(﹣x)的最小值,从而得到关于的不等式,解出的取值范围.【题目详解】(1)由f(x)=|x﹣a|+2a≤4,得2a﹣4≤x﹣a≤﹣2a+4,∴3a﹣4≤x≤﹣a+4,∵不等式f(x)≤4的解集为{x|﹣1≤x≤3},∴,∴a=1;(2)由(1)知f(x)=|x﹣1|+2,∵存在实数x0,使f(x0)≤5m2+m﹣f(﹣x0)成立,∴只需5m2+m≥[f(x)+f(﹣x)]min∵f(x)+f(﹣x)=|x﹣1|+|x+1|+4≥|(x﹣1)﹣(x+1)|+4=6,当且仅当(x﹣1)(x+1)≤0,即﹣1≤x≤1时取等号,∴5m2+m≥6,∴或m≥1,∴m的取值范围为(﹣∞,]∪[1,+∞).【题目点拨】本题考查解绝对值不等式,绝对值不等式的恒成立问题,属于中档题.18、(Ⅰ)4x﹣y﹣18=0(Ⅱ)y=13x,切点为(﹣2,﹣26)【解题分析】

(Ⅰ)求得函数的导数3x2+1,求得在点切线的斜率和切点的坐标,即可求解切线的方程;(Ⅱ)设切点为(m,n),求得切线的斜率为1+3m2,根据切线过原点,列出方程,求得的值,进而可求得切线的方程.【题目详解】(Ⅰ)由题意,函数f(x)=x3+x﹣16的导数为3x2+1,得,即曲线y=f(x)在点(1,f(1))处的切线斜率为4,且切点为(1,﹣14),所以切线方程为y+14=4(x﹣1),即为4x﹣y﹣18=0;(Ⅱ)设切点为(m,n),可得切线的斜率为1+3m2,又切线过原点,可得1+3m2,解得m=﹣2,即切点为(﹣2,﹣26),所以切线方程为y+26=13(x+2),即y=13x.【题目点拨】本题主要考查了导数的几何意义的应用,其中解答中熟记曲线在某点处的切线方程的求解方法,以及合理利用导数的几何意义求得切线的斜率,列出方程是解答的关键,着重考查了推理与运算能力,属于基础题.19、(Ⅰ)单调递增区间为,单调递减区间为;(Ⅱ)【解题分析】

(1)求出,当时,求出的解即可;(2)所求的问题为在上恒成立,设,,注意,所以在递增满足题意,若存在区间递减,则不满足题意,对分类讨论,求出单调区间即可.【题目详解】(Ⅰ)当时,,则.所以当时,,单调递增;当时,,单调递减.所以函数的单调递增区间为,单调递减区间为.(Ⅱ)由,得在上恒成立.设,则.设,①当时,,则在上恒成立,在上单调递增,在恒成立,所以当时,在上恒成立;②当时,令,得或(舍去).所以当时,,则是上的减函数;当时,,则是上的增函数.所以当时,.因此当时,不恒成立.综上所述,实数的取值范围是.【题目点拨】本题考查函数导数的综合应用,涉及到函数单调性、不等式恒成立,考查分类讨论思想,确定分类标准是解题的关键,属于中档题.20、(1),,.(2)是首项为,公比为的等比数列;理由见解析.【解题分析】分析:(1)先根据递推关系式求,,;,再求,,;(2)根据等比数列定义证明为等比数列.详解:(1)由条件可得:,将代入,得,而,∴,将代入,得,∴,∴,,.(2)是首项为2,公比为3的等比数列.由条件可得:,即,又,∴是首项为2,公比为3的等比数列.点睛:证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.等比数列的判定方法21、(1)或(2)存在,使得不等式成立,详见解析【解题分析】

(1)求出导函数,得切线斜率,写出切线方程,由切线过点可求得参数,从而得切线方程;(2),要使恒成立,则是的极小值点,先由此结论求出参数,然后验证是极小值,也是最小值点.【题目详解】(1)∴曲线在处的切线方程为又切线过点∴∴或(2)的定义域为,要使恒成立,则是的极小值点.∵∴,∵,∴此时,,当时,,当时,,∴在处取得极小值1,∴当时,,当时,,即∴当时,恒成立,∴【题目点拨】本题考查导数的几何意义,考查用导数研究不等式恒成立问题.不等式恒成立问题,通常转化为求函数极值.本题通过不等式恒成立及,因此问题转化为就是极小值,从而先求出参数的值,然后再证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论