陕西省西安高中2024届高二数学第二学期期末调研试题含解析_第1页
陕西省西安高中2024届高二数学第二学期期末调研试题含解析_第2页
陕西省西安高中2024届高二数学第二学期期末调研试题含解析_第3页
陕西省西安高中2024届高二数学第二学期期末调研试题含解析_第4页
陕西省西安高中2024届高二数学第二学期期末调研试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省西安高中2024届高二数学第二学期期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.有一个偶数组成的数阵排列如下:248142232…610162434……12182636………202838…………3040……………42…………………则第20行第4列的数为()A.546 B.540 C.592 D.5982.已知为抛物线的焦点,点的坐标为,过点作斜率为的直线与抛物线交于、两点,延长、交抛物线于、两点设直线的斜率为,则()A.1 B.2 C.3 D.43.函数的图象如图所示,为了得到的图象,则只要将的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度4.中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究.设为整数,若a和b被m除得余数相同,则称a和b对模m同余.记为.若,,则b的值可以是()A.2019 B.2020 C.2021 D.20225.已知函数,当时,,则a的取值范围是A. B. C. D.6.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为A.89 B.25 C.97.从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件A为“第一次取到的是奇数”,B为“第二次取到的是3的整数倍”,则()A. B. C. D.8.设是函数的定义域,若存在,使,则称是的一个“次不动点”,也称在区间I上存在“次不动点”.若函数在上存在三个“次不动点”,则实数的取值范围是()A. B. C. D.9.下列选项错误的是()A.“”是“”的充分不必要条件.B.命题“若,则”的逆否命题是“若,则”C.若命题“”,则“”.D.若“”为真命题,则均为真命题.10.如图,和都是圆内接正三角形,且,将一颗豆子随机地扔到该圆内,用表示事件“豆子落在内”,表示事件“豆子落在内”,则()A. B. C. D.11.在三棱锥中,,,面,,,分别为,,的中点,,则异面直线与所成角的余弦值为()A. B. C. D.12.设地球的半径为R,地球上A,B两地都在北纬45∘的纬度线上去,且其经度差为90∘,则A,A.πR B.πR2 C.πR3二、填空题:本题共4小题,每小题5分,共20分。13.若三角形内切圆半径为r,三边长为a,b,c,则,利用类比思想:若四面体内切球半径为R,四个面的面积为,则四面体的体积________.14.函数,若关于的方程在区间内恰有5个不同的根,则实数的取值范围是__________.15.一个高为1的正三棱锥的底面正三角形的边长为6,则此三棱锥的侧面积为______.16.展开式中,项的系数为______________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)现从某医院中随机抽取了七位医护人员的关爱患者考核分数(患者考核:10分制),用相关的特征量表示;医护专业知识考核分数(试卷考试:100分制),用相关的特征量表示,数据如下表:(Ⅰ)求关于的线性回归方程(计算结果精确到0.01);(Ⅱ)利用(I)中的线性回归方程,分析医护专业考核分数的变化对关爱患者考核分数的影响,并估计某医护人员的医护专业知识考核分数为95分时,他的关爱患者考核分数(精确到0.1);(Ⅲ)现要从医护专业知识考核分数95分以下的医护人员中选派2人参加组建的“九寨沟灾后医护小分队”培训,求这两人中至少有一人考核分数在90分以下的概率.附:回归方程中斜率和截距的最小二乘法估计公式分别为18.(12分)已知的展开式中,前三项系数成等差数列.(1)求含项的系数;(2)将二项式的展开式中所项重新排成一列,求有理项互不相邻的概率.19.(12分)在平面直角坐标系中,直线l的参数方程为(t为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)设直线l与曲线C交于A,B两点,求线段的长.20.(12分)已知关于x的不等式(其中).(1)当a=4时,求不等式的解集;(2)若不等式有解,求实数a的取值范围.21.(12分)已知函数的图象关于原点对称.(Ⅰ)求,的值;(Ⅱ)若函数在内存在零点,求实数的取值范围.22.(10分)已知函数.(1)求函数在区间上的最大值和最小值;(2)已知,求满足不等式的的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】分析:观察数字的分布情况,可知从右上角到左下角的一列数成公差为2的等差数列,想求第20行第4列的数,只需求得23行第一个数再减去即可,进而归纳每一行第一个数的规律即可得出结论.详解:顺着图中直线的方向,从上到下依次成公差为2的等差数列,要想求第20行第4列的数,只需求得23行第一个数再减去即可.观察可知第1行的第1个数为:;第2行第1个数为:;第3行第1个数为:.……第23行第1个数为:.所以第20行第4列的数为.故选A.点睛:此题考查归纳推理,解题的关键是通过观察得出数字的排列规律,是中档题.2、D【解题分析】

设,,联立直线方程与抛物线方程可得,设,,则,,设AC,BD所在的直线方程可得,,由此可得的值.【题目详解】设过点F作斜率为的直线方程为:,

联立抛物线C:可得:,

设A,B两点的坐标为:,,

则,

设,,

则,同理,

设AC所在的直线方程为,

联立,得,

,同理,,

则.

故选:D.【题目点拨】本题考查直线与抛物线的位置关系,考查斜率的计算,考查学生的计算能力,属于中档题.3、D【解题分析】

先根据图象确定A的值,进而根据三角函数结果的点求出求与的值,确定函数的解析式,然后根据诱导公式将函数化为余弦函数,再平移即可得到结果.【题目详解】由题意,函数的部分图象,可得,即,所以,再根据五点法作图,可得,求得,故.函数的图象向左平移个单位,可得的图象,则只要将的图象向右平移个单位长度可得的图象,故选:D.【题目点拨】本题主要考查了三角函数的图象与性质,以及三角函数的图象变换的应用,其中解答中熟记三角函数的图象与性质,以及三角函数的图象变换是解答的关键,着重考查了推理与运算能力,属于基础题.4、A【解题分析】

先利用二项式定理将表示为,再利用二项式定理展开,得出除以的余数,结合题中同余类的定义可选出合适的答案.【题目详解】,则,所以,除以的余数为,以上四个选项中,除以的余数为,故选A.【题目点拨】本题考查二项式定理,考查数的整除问题,解这类问题的关键就是将指数幂的底数表示为与除数的倍数相关的底数,结合二项定理展开式可求出整除后的余数,考查计算能力与分析问题的能力,属于中等题.5、A【解题分析】∵当x1≠x2时,<0,∴f(x)是R上的单调减函数,∵f(x)=,∴,∴0<a≤,故选A.6、A【解题分析】

利用条件概率的计算公式即可得出.【题目详解】设事件A表示某地四月份吹东风,事件B表示四月份下雨.根据条件概率计算公式可得在吹东风的条件下下雨的概率P(B|A)=8故选:A【题目点拨】本题主要考查条件概率的计算,正确理解条件概率的意义及其计算公式是解题的关键,属于基础题.7、B【解题分析】

由条件概率的定义,分别计算即得解.【题目详解】由题意事件为“第一次取到的是奇数且第二次取到的是3的整数倍”:若第一次取到的为3或9,第二次有2种情况;若第一次取到的为1,5,7,第二次有3种情况,故共有个事件由条件概率的定义:故选:B【题目点拨】本题考查了条件概率的计算,考查了学生概念理解,分类讨论,数学运算的能力,属于中档题.8、A【解题分析】

由已知得在上有三个解。即函数有三个零点,求出,利用导函数性质求解。【题目详解】因为函数在上存在三个“次不动点”,所以在上有三个解,即在上有三个解,设,则,由已知,令得,即或当时,,;,,要使有三个零点,则即,解得;当时,,;,,要使有三个零点,则即,解得;所以实数的取值范围是故选A.【题目点拨】本题考查方程的根与函数的零点,以及利用导函数研究函数的单调性,属于综合体。9、D【解题分析】

根据充分条件和必要条件的定义,逆否命题的定义、含有量词的命题的否定以及复合命题的真假关系依次对选项进行判断即可得到答案。【题目详解】对于A,由可得或,即“”是“”的充分不必要条件,故A正确;对于B,根据逆否命题的定义可知命题“若,则”的逆否命题是“若,则”,故B正确;对于C,由全称命题的否定是存在命题,可知若命题“”,则“”,故C正确;对于D,根据复合命题的真值表可知若“”为真命题,则至少一个为真命题,故D错误。故答案选D【题目点拨】本题考查命题真假的判定,涉及到逆否命题的定义、充分条件与必要条件的判断、含有量词的命题的否定以及复合命题的真假关系,属于基础题。10、D【解题分析】如图所示,作三条辅助线,根据已知条件,这些小三角形全等,包含个小三角形,同时又在内的小三角形共有个,所以,故选D.11、B【解题分析】

由题意可知,以B为原点,BC,BA,BP分别为x,y,z轴建立空间直角坐标系,利用空间向量坐标法求角即可.【题目详解】∵∴,以B为原点,BC,BA,BP分别为x,y,z轴建立空间直角坐标系,∴,设,则,∵,∴,解得∴∴,∴异面直线与所成角的余弦值为故选B【题目点拨】本题考查了异面直线所成角的余弦值求法问题,也考查了推理论证能力和运算求解能力,是中档题.12、C【解题分析】分析:设在北纬45∘纬圆的圆心为C,球心为O,连结OA,OB,OC,AC,BC,根据地球纬度的定义,算出小圆半径AC=BC=2R2,由A,B两地经度差为90∘,在RtΔABC中算出AB=AC详解:设在北纬45∘纬圆的圆心为C,球心为O连结OA,OB,OC,AC,BC,则OC⊥平面ABC,在RtΔACO中,AC=OACcos45∘∴A,B两地经度差为90∘,∴∠ACB=在RtΔABC中,AB=A由此可得ΔAOB是边长为R的等边三角形,得∠AOB=60∴A,B两地球面的距离是60πR180=π点睛:本题考查地球上北纬45∘圆上两点球的距离,着重考查了球面距离及相关计算,经纬度等基础知识,考查运算求解能力,考查空间想象能力,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、.【解题分析】试题分析:由题意得三角形的面积可拆分成分别由三条边为底,其内切圆半径为高的三个小三角形的面积之和,从而可得公式,由类比思想得,四面体的体积亦可拆分成由四个面为底,其内切圆的半径为高的四个三棱锥的体积之和,从而可得计算公式.考点:1.合情推理;2.简单组合体的体积(多面体内切球).【方法点晴】此题主要考查合情推理在立体几何中的运用方面的内容,属于中低档题,根据题目前半段的“分割法”求三角形面积的推理模式,即以三角形的三条边为底、其内切圆半径为高分割成三个三角形面积之和,类似地将四面体以四个面为底面、其内切球半径为高分割成四个三棱锥(四面体)体积之和,从而问题可得解决.14、【解题分析】

作以及图像,根据图像确定实数满足的条件,解不等式得结果.【题目详解】作以及图像,根据图像得【题目点拨】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.15、18【解题分析】

画出满足题意的三棱锥P-ABC图形,根据题意,画出高,利用直角三角形,求出此三棱锥的侧面上的高,即可求出棱锥的侧面积.【题目详解】由题意画出图形,如图所示:因为三棱锥P-ABC是正三棱锥,顶点在底面上的射影D是底面的中心,在三角形PDF中:因为三角形PDF三边长PD=1,DF=3所以PF=2,则这个棱锥的侧面积S=3×故答案为:18。【题目点拨】本题考查棱柱、棱锥、棱台的侧面积和表面积和棱锥的结构特征,考查数形结合思想,还考查计算能力,是基础题,棱锥的侧面积是每一个侧面的面积之和。16、【解题分析】∴二项式展开式中,含项为∴它的系数为1.故答案为1.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)随着医护专业知识的提高,个人的关爱患者的心态会变得更温和,耐心,因此关爱患者的考核分数也会稳步提高.(3).【解题分析】分析:(1)根据表中数据计算、,求出回归系数,写出回归方程;(2)根据(Ⅰ)中的线性回归方程知x与y是正相关,计算x=95时y的值即可;(3)从中任选连个的所有情况有共六种,至少有一个分数在90分以下的情况有3种,根据古典概型的计算公式进行计算即可.详解:(Ⅰ)由题得,所以所以线性回归方程为(Ⅱ)由于.所以随着医护专业知识的提高,个人的关爱患者的心态会变得更温和,耐心,因此关爱患者的考核分数也会稳步提高当时,(Ⅲ)由于95分以下的分数有88,90,90,92,共4个,则从中任选连个的所有情况有,,,,,,共六种.两人中至少有一个分数在90分以下的情况有,,,共3种.故选派的这两个人中至少有一人考核分数在90分以下的概率.点睛:本题考查了线性回归方程的求法与应用问题,是基础题.对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可.18、(1)7;(2).【解题分析】

(1)利用二项式定理求出前三项的系数的表达式,利用这三个系数成等差数列并结合组合数公式求出的值,再利用二项式展开式通项可求出项的系数;(2)利用二项展开式通项求出展开式中有理项的项数为,总共是项,利用排列思想得出公共有种排法,然后利用插空法求出有理项不相邻的排法种数,最后利用古典概型概率公式可计算出所求事件的概率.【题目详解】(1)∵前三项系数、、成等差数列.,即.∴或(舍去)∴展开式中通项公式T,,,1.令,得,∴含x2项的系数为;(2)当为整数时,.∴展开式共有9项,共有种排法.其中有理项有3项,有理项互不相邻有种排法,∴有理项互不相邻的概率为【题目点拨】本题考查二项式定理指定项的系数,考查排列组合以及古典概型的概率计算,在处理排列组合的问题中,要根据问题类型选择合适的方法求解,同时注意合理使用分类计数原理和分步计数原理,考查逻辑推理与计算能力,属于中等题.19、(1),;(2)【解题分析】

(1)利用参数方程与普通方程、普通方程与极坐标方程的互化公式即可;(2)利用垂径定理与勾股定理即可得到答案.【题目详解】(1)直线l的普通方程为,曲线C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论