吉林省延边市第二中学2024届数学高二下期末质量跟踪监视模拟试题含解析_第1页
吉林省延边市第二中学2024届数学高二下期末质量跟踪监视模拟试题含解析_第2页
吉林省延边市第二中学2024届数学高二下期末质量跟踪监视模拟试题含解析_第3页
吉林省延边市第二中学2024届数学高二下期末质量跟踪监视模拟试题含解析_第4页
吉林省延边市第二中学2024届数学高二下期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省延边市第二中学2024届数学高二下期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数满足,则在复数平面上对应的点()A.关于轴对称 B.关于轴对称C.关于原点对称 D.关于直线对称2.魏晋时期数学家刘徽在他的著作九章算术注中,称一个正方体内两个互相垂直的内切圆柱所围成的几何体为“牟合方盖”,刘徽通过计算得知正方体的内切球的体积与“牟合方盖”的体积之比应为:若正方体的棱长为2,则“牟合方盖”的体积为A.16 B. C. D.3.设且,则“”是“”的()A.必要不充分条件B.充要条件C.既不充分也不必要条件D.充分不必要条件4.已知函数,,若对,,使成立,则实数的取值范围是()A. B. C. D.5.由曲线,直线及轴所围成的平面图形的面积为()A.6 B.4 C. D.6.二项式展开式中,的系数是(

)A. B. C.

D.7.已知复数z满足(i为虚数单位),则复数z在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.阅读程序框图,运行相应的程序,则输出的的值为()A.72 B.90 C.101 D.1109.若复数()不是纯虚数,则()A. B. C. D.且10.已知为两个不同平面,为直线且,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.下列说法正确的是()A.命题“若,则”的否命题为“若,则”B.命题“,”的否定是“,”C.样本的相关系数r,越接近于1,线性相关程度越小D.命题“若,则”的逆否命题为真命题12.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是()A.男生2人,女生6人B.男生3人,女生5人C.男生5人,女生3人D.男生6人,女生2人二、填空题:本题共4小题,每小题5分,共20分。13.已知全集,集合,,则______.14.已知随机变量服从正态分布X∼N(2,σ2),若P(X<a)=0.32,则P(a≤X<4-a)15.在极坐标系中,过点作圆的切线,则切线的极坐标方程是__________.16.已知方程x2-2x+p=0的两个虚根为α、β,且α-β=4,则实数三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)年春节期间,某服装超市举办了一次有奖促销活动,消费每超过元(含元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有个形状、大小完全相同的小球(其中红球个,黑球个)的抽奖盒中,一次性摸出个球,其中奖规则为:若摸到个红球,享受免单优惠;若摸出个红球则打折,若摸出个红球,则打折;若没摸出红球,则不打折.方案二:从装有个形状、大小完全相同的小球(其中红球个,黑球个)的抽奖盒中,有放回每次摸取球,连摸次,每摸到次红球,立减元.(1)若两个顾客均分别消费了元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;(2)若某顾客消费恰好满元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?18.(12分)已知.(1)若,求函数的单调递增区间;(2)若,且函数在区间上单调递减,求的值.19.(12分)假设某士兵远程射击一个易爆目标,射击一次击中目标的概率为,三次射中目标或连续两次射中目标,该目标爆炸,停止射击,否则就一直独立地射击至子弹用完.现有5发子弹,设耗用子弹数为随机变量X.(1)若该士兵射击两次,求至少射中一次目标的概率;(2)求随机变量X的概率分布与数学期望E(X).20.(12分)已知函数,.(1)当时,求不等式的解集;(2)若的解集包含,求实数的取值范围.21.(12分)已知函数,曲线在点处的切线方程为.(1)求的值;(2)求在上的最大值.22.(10分)已知抛物线的焦点与双曲线的右焦点重合.(1)求抛物线的方程及焦点到准线的距离;(2)若直线与交于两点,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

由题意可得z1,z2的实部相等,虚部互为相反数,故z1,z2在复数平面上对应的点Z1,Z2的关系即可得解.【题目详解】复数满足,可得z1,z2的实部相等,虚部互为相反数,故z1,z2在复数平面上对应的点关于轴对称,故选A.【题目点拨】本题主要考查共轭复数的定义,复数与复平面内对应点间的关系,属于基础题.2、C【解题分析】

由已知求出正方体内切球的体积,再由已知体积比求得“牟合方盖”的体积.【题目详解】正方体的棱长为2,则其内切球的半径,正方体的内切球的体积,又由已知,.故选C.【题目点拨】本题考查球的体积的求法,理解题意是关键,是基础题.3、C【解题分析】或;而时,有可能为.所以两者没有包含关系,故选.4、A【解题分析】由题意得“对,,使成立”等价于“”.∵,当且仅当时等号成立.∴.在中,由,解得.令,则,(其中).∴.由,解得,又,故,∴实数的取值范围是.选A.点睛:(1)对于求或型的最值问题利用绝对值三角不等式更方便.形如的函数只有最小值,形如的函数既有最大值又有最小值.(2)求函数的最值时要根据函数解析式的特点选择相应的方法,对于含有绝对值符号的函数求最值时,一般采用换元的方法进行,将问题转化为二次函数或三角函数的问题求解.5、D【解题分析】

先求可积区间,再根据定积分求面积.【题目详解】由,得交点为,所以所求面积为,选D.【题目点拨】本题考查定积分求封闭图形面积,考查基本求解能力,属基本题.6、B【解题分析】通项公式:,令,解得,的系数为,故选B.【方法点晴】本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.7、A【解题分析】

算出后可得其对应的点所处的象限.【题目详解】因为,故,其对应的点为,它在第一象限,故选A.【题目点拨】本题考查复数的除法及复数的几何意义,属于基础题.8、B【解题分析】输入参数第一次循环,,满足,继续循环第二次循环,,满足,继续循环第三次循环,,满足,继续循环第四次循环,,满足,继续循环第五次循环,,满足,继续循环第六次循环,,满足,继续循环第七次循环,,满足,继续循环第八次循环,,满足,继续循环第九次循环,,不满足,跳出循环,输出故选B点睛:此类问题的一般解法是严格按照程序框图设计的计算步骤逐步计算,逐次判断是否满足判断框内的条件,决定循环是否结束.要注意初始值的变化,分清计数变量与累加(乘)变量,掌握循环体等关键环节.9、A【解题分析】

先解出复数()是纯虚数时的值,即可得出答案.【题目详解】若复数()是纯虚数,根据纯虚数的定义有:,则复数()不是纯虚数,故选A【题目点拨】本题考查虚数的分类,属于基础题.10、B【解题分析】

当时,若,则推不出;反之可得,根据充分条件和必要条件的判断方法,判断即可得到答案.【题目详解】当时,若且,则推不出,故充分性不成立;当时,可过直线作平面与平面交于,根据线面平行的性质定理可得,又,所以,又,所以,故必要性成立,所以“”是“”的必要不充分条件.故选:B.【题目点拨】本题主要考查充分条件和必要条件的判定,关键是掌握充分条件和必要条件的定义,判断是的什么条件,需要从两方面分析:一是由条件能否推得条件;二是由条件能否推得条件.11、D【解题分析】

利用四种命题之间的变换可判断A;根据全称命题的否定变法可判断B;利用相关系数与相关性的关系可判断C;利用原命题与逆否命题真假关系可判断D.【题目详解】对于A,命题“若,则”的否命题为“若,则”,故A错误;对于B,命题“,”的否定是“,”,故B错误;对于C,样本的相关系数r,越接近于1,线性相关程度越大,故C错误;对于D,命题“若,则”为真命题,故逆否命题也为真命题,故D正确;故选:D【题目点拨】本题考查了判断命题的真假、全称命题的否定、四种命题的转化以及原命题与逆否命题真假关系、相关系数与相关性的关系,属于基础题.12、B【解题分析】试题分析:设男学生有x人,则女学生有8-x人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,,∴x(x-1)(8-x)=30=2×3×5,∴x=3,故选B.考点:排列、组合的实际应用.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

利用集合补集和交集的定义直接求解即可.【题目详解】因为全集,集合,,所以.故答案为:【题目点拨】本题考查了集合的补集、交集的定义,属于基础题.14、0.36【解题分析】P(X<a)=0.32,∴P(X>4-a)=0.32,∴P(a<X≤4-a)=1-2P(X<a)=1-2×0.32=0.36.15、.【解题分析】试题分析:点的直角坐标为,将圆的方程化为直角坐标方程为,化为标准式得,圆心坐标为,半径长为,而点在圆上,圆心与点之间连线平行于轴,故所求的切线方程为,其极坐标方程为.考点:1.极坐标与直角坐标之间的转化;2.圆的切线方程16、5【解题分析】

根据题意得出Δ<0,然后求出方程x2-2x+p=0的两个虚根,再利用复数的求模公式结合等式α-β=4可求出实数【题目详解】由题意可知,Δ=4-4p<0,得p>1.解方程x2-2x+p=0,即x-12=1-p,解得所以,α-β=2p-1故答案为5.【题目点拨】本题考查实系数方程虚根的求解,同时也考查了复数模长公式的应用,考查运算求解能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)选择第一种抽奖方案更合算.【解题分析】

(1)选择方案一,利用积事件的概率公式计算出两位顾客均享受到免单的概率;(2)选择方案一,计算所付款金额的分布列和数学期望值,选择方案二,计算所付款金额的数学期望值,比较得出结论.【题目详解】(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件,则,所以两位顾客均享受到免单的概率为;(2)若选择方案一,设付款金额为元,则可能的取值为、、、.,,,.故的分布列为,所以(元).若选择方案二,设摸到红球的个数为,付款金额为,则,由已知可得,故,所以(元).因为,所以该顾客选择第一种抽奖方案更合算.【题目点拨】本题考查独立事件的概率乘法公式,以及离散型随机变量分布列与数学期望,同时也考查了二项分布的数学期望与数学期望的性质,解题时要明确随机变量所满足的分布列类型,考查计算能力,属于中等题.18、(1)单调递增区间为(2)【解题分析】

(1)求导分析函数单调性即可.(2)由题可知在区间上恒成立可得,即可得再结合即可.【题目详解】解:(1)由,得函数的单调递增区间为.(2)若函数在区间上单调递减,则,则,因为,所以,又,所以.【题目点拨】本题主要考查了利用导数求解函数的单调区间问题,同时也考查了利用函数的单调区间求解参数范围的问题,需要利用恒成立问题求最值,属于基础题.19、(1).(2)分布列见解析,.【解题分析】分析:(1)利用对立事件即可求出答案;(2)耗用子弹数的所有可能取值为2,3,4,5,分别求出相应的概率即可.详解:(1)该士兵射击两次,至少射中一次目标的概率为.(2)耗用子弹数的所有可能取值为2,3,4,5.当时,表示射击两次,且连续击中目标,;当时,表示射击三次,第一次未击中目标,且第二次和第三次连续击中目标,;当时,表示射击四次,第二次未击中目标,且第三次和第四次连续击中目标,;当时,表示射击五次,均未击中目标,或只击中一次目标,或击中两次目标前四次击中不连续两次或前四次击中一次且第五次击中,或击中三次第五次击中且前四次无连续击中。;随机变量的数学期望.点睛:本题考查离散型随机变量的分布列和数学期望的求法,解题时要认真审题.20、(1).(2).【解题分析】

(1)利用分类讨论法解绝对值不等式;(2)等价转化为对任意的,恒成立,即对任意的,恒成立,再解不等式得解.【题目详解】(1)当时,.①当时,原不等式可化为,化简得,解得,∴;②当时,原不等式可化为,化简得,解得,∴;③当时,原不等式可化为,化简得,解得,∴;综上所述,不等式的解集是;(2)由题意知,对任意的,恒成立,即对任意的,恒成立,∵当时,,∴对任意的,恒成立,∵,,∴,∴,即实数的取值范围为.【题目点拨】本题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论