版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京市10区数学高二下期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的单调增区间是()A. B. C. D.2.已知变量,之间的一组数据如下表:13572345由散点图可知变量,具有线性相关,则与的回归直线必经过点()A. B. C. D.3.设是含数的有限实数集,是定义在上的函数,若的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,的可能取值只能是()A. B. C. D.4.已知将函数的图象向左平移个单位长度后得到的图象,则在上的值域为()A. B. C. D.5.函数的图象为()A. B.C. D.6.设集合U=x1≤x≤10,x∈Z,A=1,3,5,7,8,B=2,4,6,8A.2,4,6,7 B.2,4,5,9 C.2,4,6,8 D.2,4,6,7.已知为两条不同的直线,为两个不同的平面,则下列四个命题中正确的是①若则;②若则;③若,则;④若则A.①②④ B.②③ C.①④ D.②④8.下列说法中正确的个数是()①命题:“、,若,则”,用反证法证明时应假设或;②若,则、中至少有一个大于;③若、、、、成等比数列,则;④命题:“,使得”的否定形式是:“,总有”.A. B. C. D.9.已知三棱柱的侧棱与底面边长都相等,在底面上的射影为的中点,则异面直线与所成的角的余弦值为A. B. C. D.10.已知点,则点轨迹方程是()A. B.C. D.11.已知集合,,则集合()A. B. C. D.12.从名男生和名女生中选出名学生参加一项活动,要求至少一名女生参加,不同的选法种数是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某细胞集团,每小时有2个死亡,余下的各个分裂成2个,经过8小时后该细胞集团共有772个细胞,则最初有细胞__________个.14.某一智力游戏玩一次所得的积分是一个随机变量,其概率分布如表,数学期望.则__________.03615.将正整数对作如下分组,第组为,第组为,第组为,第组为则第组第个数对为__________.16.设等差数列的前项和为,若,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)球O的半径为R,A﹑B﹑C在球面上,A与B,A与C的球面距离都为,B与C的球面距离为,求球O在二面角B-OA-C内的部分的体积.18.(12分)已知矩阵,矩阵B的逆矩阵.(1)求矩阵A的特征值及矩阵B.(2)若先对曲线实施矩阵A对应的变换,再作矩阵B对应的变换,试用一个矩阵来表示这两次变换,并求变换后的结果.19.(12分)已知.(Ⅰ)计算的值;(Ⅱ)若,求中含项的系数;(Ⅲ)证明:.20.(12分)已如变换对应的变换矩阵是,变换对应的变换矩阵是.(Ⅰ)若直线先经过变换,再经过变换后所得曲线为,求曲线的方程;(Ⅱ)求矩阵的特征值与特征向量.21.(12分)在中,角所对的边分别是,已知.(1)求;(2)若,且,求的面积.22.(10分)已知,命题:对,不等式恒成立;命题,使得成立.(1)若为真命题,求的取值范围;(2)当时,若假,为真,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
求导,并解不等式可得出函数的单调递增区间。【题目详解】,,令,得或,因此,函数的单调递增区间为,,故选:A。【题目点拨】本题考查利用导数求函数的单调区间,求函数单调区间有以下几种方法:(1)基本性质法;(2)图象法;(3)复合函数法;(4)导数法。同时要注意,函数同类单调区间不能合并,中间用逗号隔开。2、C【解题分析】
由表中数据求出平均数和即可得到结果.【题目详解】由表中数据知,,,则与的回归直线必经过点.故选:C.【题目点拨】本题主要考查回归分析的基本思想及应用,理解并掌握回归直线方程必经过样本中心点,属基础题.3、B【解题分析】
利用函数的定义即可得到结果.【题目详解】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,故选B.【题目点拨】本题考查函数的定义,即“对于集合A中的每一个值,在集合B中有唯一的元素与它对应”(不允许一对多).4、B【解题分析】解析:因,故,因,故,则,所以,应选答案B.5、A【解题分析】
利用导数研究函数的单调性,根据单调性,对比选项中的函数图象,从而可得结果.【题目详解】因为,所以,时,,在上递增;时,,在上递减,只有选项符合题意,故选A.【题目点拨】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.6、D【解题分析】
先求出CUA,再求∁【题目详解】由题得CU所以∁UA∩B故选:D【题目点拨】本题主要考查补集和交集的运算,意在考查学生对这种知识的理解掌握水平,属于基础题.7、D【解题分析】
根据选项利用判定定理、性质定理以及定义、举例逐项分析.【题目详解】①当都在平面内时,显然不成立,故错误;②因为,则过的平面与平面的交线必然与平行;又因为,所以垂直于平面内的所有直线,所以交线,又因为交线,则,故正确;③正方体上底面的两条对角线平行于下底面,但是两条对角线不平行,故错误;④因为垂直于同一平面的两条直线互相平行,故正确;故选:D.【题目点拨】本题考查判断立体几何中的符号语言表述的命题的真假,难度一般.处理立体几何中符号语言问题,一般可采用以下方法:(1)根据判定、性质定理分析;(2)根据定义分析;(3)举例说明或者作图说明.8、C【解题分析】
根据命题的否定形式可判断出命题①的正误;利用反证法可得出命题②的真假;设等比数列的公比为,利用等比数列的定义和等比中项的性质可判断出命题③的正误;利用特称命题的否定可判断出命题④的正误.【题目详解】对于命题①,由于可表示为且,该结论的否定为“或”,所以,命题①正确;对于命题②,假设且,由不等式的性质得,这与题设条件矛盾,假设不成立,故命题②正确;对于命题③,设等比数列、、、、的公比为,则,.由等比中项的性质得,则,命题③错误;对于命题④,由特称命题的否定可知,命题④为真命题,故选:C.【题目点拨】本题考查命题真假的判断,涉及反证法、等比中项以及特称命题的否定,理解这些知识点是解题的关键,考查分析问题和解决问题的能力,属于基础题.9、D【解题分析】试题分析:设的中点为,连接,易知即为异面直线与所成的角,设三棱柱的侧棱与底面边长为,则,由余弦定理,得,故选D.考点:异面直线所成的角.10、A【解题分析】由双曲线的定义可知:点位于以为焦点的双曲线的左支上,且,故其轨迹方程为,应选答案A。11、B【解题分析】
由并集的定义求解即可.【题目详解】由题,则,故选:B【题目点拨】本题考查集合的并集运算,属于基础题.12、B【解题分析】
从反面考虑,从名学生中任选名的所有选法中去掉名全是男生的情况,即为所求结果.【题目详解】从名学生中任选名,有种选法,其中全为男生的有种选法,所以选出名学生,至少有名女生的选法有种.故选:B.【题目点拨】本题考查组合问题,也可以直接考虑,分类讨论,在出现“至少”的问题时,利用正难则反的方法求解较为简单,考查计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、7.【解题分析】
设开始有细胞a个,利用细胞生长规律计算经过1小时、2小时后的细胞数,找出规律,得到经过8小时后的细胞数,根据条件列式求解.【题目详解】设最初有细胞a个,因为每小时有2个死亡,余下的各个分裂成2个,所以经过1个小时细胞有,经过2个小时细胞有=,······经过8个小时细胞有,又,所以,,.故答案为7.【题目点拨】本题考查等比数列求和公式的应用,找出规律、构造数列是解题关键,考查阅读理解能力及建模能力,属于基础题.14、【解题分析】
通过概率和为1建立方程,再通过得到方程,从而得到答案.【题目详解】根据题意可得方程组:,解得,从而.【题目点拨】本题主要考查分布列与期望相关概念,难度不大.15、【解题分析】根据归纳推理可知,每对数字中两个数字不相等,且第一组每一对数字和为,第二组每一对数字和为,第三组每对数字和为,第组每一对数字和为,第组第一对数为,第二对数为,第对数为,第对数为,故答案为.16、【解题分析】
由可得,然后根据等差数列的通项公式可得,即为所求.【题目详解】设等差数列的公差为,则,∴.∴.故答案为1.【题目点拨】本题考查等差数列中基本量的运算,解题的关键在于将问题转化为和进行处理,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解题分析】
先求出二面角B-AO-C的平面角,再根据比例关系求出球O在二面角B-OA-C内的部分的体积。【题目详解】解:A与B,A与C的球面距离都为,,BOC为二面角B-AO-C的平面角,又B与C的球面距离为,BOC=,球O夹在二面角B-AO-C的体积是球的六分之一即为【题目点拨】先求出二面角B-AO-C的平面角,再根据比例关系求出球O在二面角B-OA-C内的部分的体积。18、(1)矩阵A的特征值为1,2;;(2),【解题分析】
(1)通过特征多项式即可得到特征值,利用,可计算出矩阵B;(2)首先可计算出的结果,然后设出,变换后的点设成,利用线性变换得到相关关系,从而得到新曲线.【题目详解】(1)矩阵A的特征多项式,令,则或,故矩阵A的特征值为1,2;设,根据,可得:即,解得,所以矩阵.(2)两次变换后的矩阵,在曲线上任取一点,在变换C的作用下得到,则,即,整理得,可得,即,代入得.【题目点拨】本题主要考查线性变换,特征值的计算,意在考查学生的分析能力,计算能力,难度中等.19、(Ⅰ)-2019;(Ⅱ)196;(Ⅲ)详见解析.【解题分析】
(Ⅰ)由于,代入-1即可求得答案;(Ⅱ)由于,利用二项式定理即可得到项的系数;(Ⅲ)可设,找出含项的系数,利用错位相减法数学思想两边同时乘以,再找出含项的系数,于是整理化简即可得证.【题目详解】解:(Ⅰ)∵,∴;∴;(Ⅱ),中项的系数为;(Ⅲ)设(且)①则函数中含项的系数为,另一方面:由①得:②①-②得:,所以,所以,则中含项的系数为,又因为,,所以,即,所以.【题目点拨】本题主要考查二项式定理的相关应用,意在考查学生对于赋值法的理解,计算能力,分析能力及逻辑推理能力,难度较大.20、(Ⅰ);(Ⅱ)详见解析.【解题分析】
(Ⅰ)先求出变换矩阵,然后设曲线上一点,列出方程即可得到方程;(Ⅱ)先利用多项式求出特征根,然后求出特征向量.【题目详解】解:(Ⅰ),在曲线上任取一点,在变换的作用下得到点,则即,整理得,则即代入中得.(Ⅱ)矩阵的特征多项式为,令得或,①当时,由,得即令,则.所以矩阵的一个特征向量为;②当时,由,得,即令,则.所以矩阵的一个特征向量.【题目点拨】本题主要考查矩阵变换,特征值和特征向量的相关运算.意在考查学生的分析能力和计算能力,难度中等.21、(Ⅰ);(Ⅱ).【解题分析】试题分析:利用正弦定理和余弦定理及三角形面积公式解斜三角形是高考高频考点,利用正弦定理和余弦定理进行边转角或角转边是常用的方法,本题利用正弦定理“边转角”后,得出角C,第二步利用余弦定理求出边a,c,再利用面积公式求出三角形的面积.试题解析:(1)由正弦定理,得,因为,解得,.(2)因为.由余弦定理,得,解得.的面积.【题目点拨】利用正弦定理和余弦定理及三角形面积公式解斜三角形是高考高频考点,利用正弦定理和余弦定理进行边转角或角转边是常用的方法,已知两边及其夹角求第三边或已知三边求任意角使用于心定理,已知两角及任意边或已知两边及一边所对的角借三角形用正弦定理,另外含经常利用三角形面积公式以及与三角形的内切圆半径与三角形外接圆半径发生联系,要灵活使用公式.22、(1);(2).【解题分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 财政奖补示范村实施方案(2篇)
- 学校安全稳定工作方案(二篇)
- 学校元旦活动方案样本(4篇)
- 冬期停工维护方案样本(3篇)
- 小学有关厉行节约坚决制止餐饮浪费行为工作实施方案
- 创建二级综合医院实施方案样本(4篇)
- 五一节工会活动方案(4篇)
- 农村公路管护整治行动方案范文(2篇)
- 中式婚礼策划方案模版(2篇)
- 国庆节教师节活动方案
- 2024年度品牌方与带货主播合作推广特定商品的合同范本
- 《精装修成品保护》课件
- 专利实施独占合同范例
- 2022版义务教育《体育与健康课程标准》测试题-含答案
- 2024护理个人年终总结
- 人文与历史知识考试题库500题(含答案)
- 2024版抗菌药物DDD值速查表
- 猜想04整式的乘法与因式分解(易错必刷30题10种题型专项训练)
- 药房质量管理体系文件的管理制度
- 教育心理学-形考作业4(第十至十一章)-国开-参考资料
- 2024年事业单位考试(综合管理类A类)职业能力倾向测验试卷及答案指导
评论
0/150
提交评论