2024届云南省弥勒市朋普中学九年级数学第一学期期末检测试题含解析_第1页
2024届云南省弥勒市朋普中学九年级数学第一学期期末检测试题含解析_第2页
2024届云南省弥勒市朋普中学九年级数学第一学期期末检测试题含解析_第3页
2024届云南省弥勒市朋普中学九年级数学第一学期期末检测试题含解析_第4页
2024届云南省弥勒市朋普中学九年级数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省弥勒市朋普中学九年级数学第一学期期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣,结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y随x的增大而增大:④若m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根,则m<﹣3且n>2;⑤<0,其中正确的结论有()A.2个 B.3个 C.4个 D.5个2.给出四个实数,2,0,-1,其中负数是(

)A. B.2 C.0 D.-13.已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为()A.2 B.4 C.6 D.84.如图方格纸中每个小正方形的边长均为1,点P、A、C都在小正方形的顶点上.某人从点P出发,沿过A、C、P三点的圆走一周,则这个人所走的路程是()A. B. C. D.不确定5.四条线段a,b,c,d成比例,其中b=3cm,c=8cm,d=12cm,则a=()A.2cm B.4cm C.6cm D.8cm6.定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角的正对记作,即底边:腰.如图,在中,,.则()A. B. C. D.7.在△ABC中,∠C=90°,AB=12,sinA=,则BC等于()A. B.4 C.36 D.8.关于二次函数,下列说法正确的是()A.图像与轴的交点坐标为 B.图像的对称轴在轴的右侧C.当时,的值随值的增大而减小 D.的最小值为-39.点关于原点的对称点是A. B. C. D.10.已知,则()A.1 B.2 C.4 D.8二、填空题(每小题3分,共24分)11.如图所示,在方格纸上建立的平面直角坐标系中,将绕点按顺时针方向旋转,得,则点的坐标为_________.12.如图,△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,恰好能与△ACP′完全重合,如果AP=8,则PP′的长度为___________.13.下列四个函数:①②③④中,当x<0时,y随x的增大而增大的函数是______(选填序号).14.如图,在中,A,B,C是上三点,如果,那么的度数为________.15.两个相似三角形的面积比为4:9,那么它们对应中线的比为______.16.若、是方程的两个实数根,且x1+x2=1-x1x2,则的值为________.17.已知⊙O的直径AB=20,弦CD⊥AB于点E,且CD=16,则AE的长为_______.18.某人感染了某种病毒,经过两轮传染共感染了121人.设该病毒一人平均每轮传染x人,则关于x的方程为_________.三、解答题(共66分)19.(10分)如图,对称轴为直线的抛物线与轴交于两点,与轴交于点连接其中点坐标.(1)求抛物线的解析式;(2)直线与抛物线交于点与轴交于点求的面积;(3)在直线下方抛物线上有一点过作轴交直线于点.四边形为平行四边形,求点的坐标.20.(6分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?21.(6分)某商业银行为提高存款额,经过最近的两次提高利息,使一年期存款的年利率由1.96%提高至2.25%,平均每次增加利息的百分率是多少?(结果写成a%的形式,其中a保留小数点后两位)22.(8分)科研人员在测试火箭性能时,发现火箭升空高度与飞行时间之间满足二次函数.(1)求该火箭升空后飞行的最大高度;(2)点火后多长时间时,火箭高度为.23.(8分)解方程(1)(用配方法)(2)(3)计算:24.(8分)超速行驶被称为“马路第一杀手”为了让驾驶员自觉遵守交通规则,湖浔大道公路检测中心在一事故多发地段安装了一个测速仪器,如图所示,已知检测点设在距离公路10米的A处,测得一辆汽车从B处行驶到C处所用时间为1.35秒.已知∠B=45°,∠C=30°.(1)求B,C之间的距离(结果保留根号);(2)如果此地限速为70km/h,那么这辆汽车是否超速?请说明理由.(参考数据;≈1.7,≈1.4)25.(10分)如图,为的直径,为上一点,,延长至点,使得,过点作,垂足在的延长线上,连接.(1)求证:是的切线;(2)当时,求图中阴影部分的面积.26.(10分)如图,已知平行四边形中,,,.平行四边形的顶点在线段上(点在的左边),顶点分别在线段和上.(1)求证:;(2)如图1,将沿直线折叠得到,当恰好经过点时,求证:四边形是菱形;(3)如图2,若四边形是矩形,且,求的长.(结果中的分母可保留根式)

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据题意和函数图象中的数据,利用二次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】∵抛物线y=ax2+bx+c(a≠1)与x轴交于点(﹣3,1),其对称轴为直线x,∴抛物线y=ax2+bx+c(a≠1)与x轴交于点(﹣3,1)和(2,1),且,∴a=b,由图象知:a<1,c>1,b<1,∴abc>1,故结论①正确;∵抛物线y=ax2+bx+c(a≠1)与x轴交于点(﹣3,1),∴9a﹣3b+c=1.∵a=b,∴c=﹣6a,∴3a+c=﹣3a>1,故结论②正确;∵当x时,y随x的增大而增大;当x<1时,y随x的增大而减小,故结论③错误;∵抛物线y=ax2+bx+c(a≠1)与x轴交于点(﹣3,1)和(2,1),∴y=ax2+bx+c=a(x+3)(x﹣2).∵m,n(m<n)为方程a(x+3)(x﹣2)+3=1的两个根,∴m,n(m<n)为方程a(x+3)(x﹣2)=﹣3的两个根,∴m,n(m<n)为函数y=a(x+3)(x﹣2)与直线y=﹣3的两个交点的横坐标,结合图象得:m<﹣3且n>2,故结论④成立;∵当x时,y1,∴1.故结论⑤正确.故选:C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠1),二次项系数a决定抛物线的开口方向和大小:当a>1时,抛物线向上开口;当a<1时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>1),对称轴在y轴左;当a与b异号时(即ab<1),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(1,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>1时,抛物线与x轴有2个交点;△=b2﹣4ac=1时,抛物线与x轴有1个交点;△=b2﹣4ac<1时,抛物线与x轴没有交点.2、D【分析】根据负数的定义,负数小于0即可得出答案.【详解】根据题意:负数是-1,故答案为:D.【点睛】此题主要考查了实数,正确把握负数的定义是解题关键.3、D【分析】根据圆锥侧面展开图的圆心角与半径(即圆锥的母线的长度)求得的弧长,就是圆锥的底面的周长,然后根据圆的周长公式l=2πr解出r的值即可.【详解】试题解析:设圆锥的底面半径为r圆锥的侧面展开扇形的半径为12,∵它的侧面展开图的圆心角是∴弧长即圆锥底面的周长是解得,r=4,∴底面圆的直径为1.故选:D.【点睛】本题考查了圆锥的计算.正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.4、C【分析】根据题意作△ACP的外接圆,根据网格的特点确定圆心与半径,求出其周长即可求解.【详解】如图,△ACP的外接圆是以点O为圆心,OA为半径的圆,∵AC=,AP=,CP=,∴AC2=AP2+CP2∴△ACP是等腰直角三角形∴O点是AC的中点,∴AO=CO=OP=∴这个人所走的路程是故选C.【点睛】此题主要考查三角形的外接圆,解题的关键是熟知外接圆的作法与网格的特点.5、A【解析】由四条线段a、b、c、d成比例,根据比例线段的定义,即可得,又由b=3cm,c=8cm,d=12cm,即可求得a的值.【详解】∵四条线段a、b、c、d成比例,∴∵b=3cm,c=8cm,d=12cm,

解得:a=2cm.

故答案为A.【点睛】此题考查了比例线段的定义.解题的关键是熟记比例线段的概念.6、C【分析】证明△ABC是等腰直角三角形即可解决问题.【详解】解:∵AB=AC,

∴∠B=∠C,

∵∠A=2∠B,

∴∠B=∠C=45°,∠A=90°,

∴在Rt△ABC中,BC==AC,

∴sin∠B•sadA=,故选:C.【点睛】本题考查解直角三角形,等腰直角三角形的判定和性质三角函数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.7、B【分析】根据正弦的定义列式计算即可.【详解】解:在△ABC中,∠C=90°,sinA=,∴=,解得BC=4,故选B.【点睛】本题主要考查了三角函数正弦的定义,熟练掌握定义是解题的关键.8、D【解析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.详解:∵y=2x2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x<-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D.点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.9、C【解析】解:点P(4,﹣3)关于原点的对称点是(﹣4,3).故选C.【点睛】本题考查关于原点对称的点的坐标,两个点关于原点对称时,两个点的横、纵坐标符号相反,即P(x,y)关于原点O的对称点是P′(﹣x,﹣y).10、C【分析】根据比例的性质得出再代入要求的式子,然后进行解答即可.【详解】解:∵,∴a=4b,c=4d,∴,故选C.【点睛】此题考查了比例的性质,熟练掌握比例线段的性质是解题的关键,是一道基础题.二、填空题(每小题3分,共24分)11、【分析】把点A绕点O顺时针旋转90°得到点A′,看其坐标即可.【详解】解:由图知A点的坐标为(-3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,由图中可以看出,点A′的坐标为(1,3),

故答案为A′(1,3).【点睛】本题考查点的旋转坐标的求法;得到关键点旋转后的位置是解题的关键.12、【分析】通过旋转的性质可以得到,,,从而可以得到是等腰直角三角形,再根据勾股定理可以计算出的长度.【详解】解:根据旋转的性质得:,∴是等腰直角三角形,∴∴∴故答案为:.【点睛】本题主要考查了旋转的性质以及勾股定理的应用,其中根据旋转的性质推断出是等腰直角三角形是解题的关键.13、②③【分析】分别根据一次函数、反比例函数和二次函数的单调性分别进行判断即可.【详解】解:

①在y=-2x+1中,k=-2<0,则y随x的增大而减少;

②在y=3x+2中,k=3>,则y随x的增大而增大;

③在中,k=-3<0,当x<00时,在第二象限,y随x的增大而增大;

④在y=x2+2中,开口向上,对称轴为x=0,所以当x<0时,y随x的增大而减小;

综上可知满足条件的为:②③.

故答案为:②③.【点睛】本题主要考查函数的增减性,掌握一次函数、反比例函数的增减性与k的关系,以及二次函数的增减性是解题的关键.14、37°【分析】根据圆周角定理直接得到∠ACB=35°.【详解】解:根据圆周角定理有∠ACB=∠AOB=×74°=37°;故答案为37°.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.15、2:1.【分析】根据相似三角形的面积的比等于相似比的平方进行计算即可;【详解】解:∵两个相似三角形的面积比为4:9,∴它们对应中线的比.故答案为:2:1.【点睛】本题主要考查了相似三角形的性质,掌握相似三角形的性质是解题的关键.16、1【详解】若x1,x2是方程x2-2mx+m2-m-1=0的两个实数根;∴x1+x2=2m;x1·x2=m2−m−1,∵x1+x2=1-x1x2,∴2m=1-(m2−m−1),解得:m1=-2,m2=1.又∵一元二次方程有实数根时,△,∴,解得m≥-1,∴m=1.故答案为1.【点睛】(1)若方程的两根是,则,这一关系叫做一元二次方程根与系数的关系;(2)使用一元二次方程根与系数关系解题的前提条件是方程要有实数根,即各项系数的取值必须满足根的判别式△=.17、16或1【分析】结合垂径定理和勾股定理,在Rt△OCE中,求得OE的长,则AE=OA+OE或AE=OA-OE,据此即可求解.【详解】解:如图,连接OC,∵⊙O的直径AB=20∴OC=OA=OB=10∵弦CD⊥AB于点E∴CE=CD=8,在Rt△OCE中,OE=则AE=OA+OE=10+6=16,如图:同理,此时AE=OA-OE=10-6=1,故AE的长是16或1.【点睛】本题考查勾股定理和垂径定理的应用,根据题意做出图形是本题的解题关键,注意分类讨论.18、【分析】设每轮传染中平均一个人传染了x个人,则第一轮传染了x个人,第二轮作为传染源的是(x+1)人,则传染x(x+1)人,依题意列方程:1+x+x(1+x)=1.【详解】整理得,.

故答案为:.【点睛】本题考查了由实际问题抽象出一元二次方程.关键是得到两轮传染数量关系,从而可列方程求解.三、解答题(共66分)19、(1);(2);(3)【分析】(1)根据对称轴公式及点A坐标建立方程组求解即可;(2)根据直线表达式求出点E坐标,再联立直线与抛物线的表达式求交点C、D的坐标,利用坐标即可求出的面积;(3)根据点Q在抛物线上设出点Q坐标,再根据P、Q之间的关系表示出点P的坐标,然后利用平行四边形的性质得到BE=PQ,从而建立方程求解即可.【详解】解:(1)由题可得,解得,∴抛物线解析式为;(2)在中,令,得,∴,由,解得或,∴,∴;(3)在中,令,得,解得或,∴,∴BE=1,设,则,∵四边形为平行四边形,∴,∴,整理得:,解得:或,当时,点Q与点B重合,故舍去,∴.【点睛】本题为二次函数综合题,熟练掌握对称轴公式、待定系数法求表达式、交点坐标的求法以及平行四边形的性质是解题的关键.20、(1)4800元;(2)降价60元.【解析】试题分析:(1)先求出降价前每件商品的利润,乘以每月销售的数量就可以得出每月的总利润;(2)设每件商品应降价x元,由销售问题的数量关系“每件商品的利润×商品的销售数量=总利润”列出方程,解方程即可解决问题.试题解析:(1)由题意得60×(360-280)=4800(元).即降价前商场每月销售该商品的利润是4800元;(2)设每件商品应降价x元,由题意得(360-x-280)(5x+60)=7200,解得x1=8,x2=60.要更有利于减少库存,则x=60.即要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.点睛:本题考查了列一元二次方程解实际问题的销售问题,解答时根据销售问题的数量关系建立方程是关键.21、平均每次增加利息的百分率约为7.14%【分析】设平均每增加利息的百分率为x,则两次增加利息后,利率为1.96%(1+x)2,由题意可列出方程,求解x即可.【详解】解:设平均每增加利息的百分率为x,由题意,得1.96%(1+x)2=2.25%解方程得x=0.0714或-2.0714(舍去)故平均每次增加利息的百分率7.14%答:平均每次增加利息的百分率约为7.14%.【点睛】此题考查的是一元二次方程的应用,掌握增长率问题的公式是解决此题的关键.22、(1)该火箭升空后飞行的最大高度为;(2)点火后和时,火箭高度为.【分析】(1)直接利用配方法将二次函数写成顶点式,进而求出即可;(2)把直接带入函数,解得的值即为所求.【详解】解:(1)由题意可得:.该火箭升空后飞行的最大高度为.(2)时,.解得:或.点火后和时,火箭高度为.【点睛】本题考查了二次函数的应用,明确与的值是解题的关键.23、(1),;(2),;(3)【分析】(1)方程整理配方后,开方即可求出解;(2)把方程左边进行因式分解,求方程的解;(3)根据二次根式、特殊角的三角函数值、0次幂、负整数指数幂的运算法则计算即可.【详解】(1),方程整理得:,配方得:,即,开方得:,解得:,;(2),,即,∴或,解得:,;(3).【点睛】本题主要考查了解一元二次方程-配方法、因式分解法以及实数的混合运算,特殊角的三角函数值,熟练掌握一元二次方程的各种解法以及熟记特殊角的三角函数值是解题的关键.24、(1)BC=(10+10)m;(2)这辆汽车超速.理由见解析.【分析】(1)作AD⊥BC于D,则AD=10m,求出CD、BD即可解决问题;(2)求出汽车的速度,即可解决问题,注意统一单位.【详解】(1)如图作AD⊥BC于D,则AD=10m,在Rt△ABD中,∵∠B=45°,∴BD=AD=10m,在Rt△ACD中,∵∠C=30°,∴tan30°=,∴CD=AD=10m,∴BC=BD+DC=(10+10)m;(2)结论:这辆汽车超速.理由:∵BC=10+10≈27m,∴汽车速度==20m/s=72km/h,∵72km/h>70km/h,∴这辆汽车超速.【点睛】本题考查解直角三角形的应用,锐角三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论