版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
静态路由是指由网络管理员手工配置的路由信息。当网络的拓扑结构或链路的状态发生变化时,网络管理员需要手工去修改路由表中相关的静态路由信息。静态路由信息在缺省情况下是私有的,不会传递给其他的路由器。当然,网管员也可以通过对路由器进行设置使之成为共享的。静态路由一般适用于比较简单的网络环境,在这样的环境中,网络管理员易于清楚地了解网络的拓扑结构,便于设置正确的路由信息。 在一个支持DDR(dial-on-demandrouting)的网络中,拨号链路只在需要时才拨通,因此不能为动态路由信息表提供路由信息的变更情况。在这种情况下,网络也适合使用静态路由。静态路由优点:使用静态路由的另一个好处是网络安全保密性高。动态路由因为需要路由器之间频繁地交换各自的路由表,而对路由表的分析可以揭示网络的拓扑结构和网络地址等信息。因此,网络出于安全方面的考虑也可以采用静态路由。静态路由缺点:大型和复杂的网络环境通常不宜采用静态路由。一方面,网络管理员难以全面地了解整个网络的拓扑结构;另一方面,当网络的拓扑结构和链路状态发生变化时,路由器中的静态路由信息需要大范围地调整,这一工作的难度和复杂程度非常高。动态路由协议:RIP协议-路由信息协议,属于最早的动态路由协议优点:节约成本,对资源消耗较低,配置简单,对硬件要求低,占用CPU、内存低,所以在小型网络中还有使用到。缺点:计算路由慢,链路变化了收敛慢,能够保存的路由表相对较小,最多只能支持15台设备的网络,只适用于小型网络动态路由协议是网络中路由器之间相互通信、传递路由信息、利用收到的路由信息更新路由器表的过程,它能实时地适应网络结构的变化。如果路由更新信息表发生了网络变化,路由选择软件就会重新计算机路由,并发出新的路由更新信息的约定。一、概况动态路由协议包括各种网络层协议,如rip、igrp、eigrp、ospf、bgp等。以下是其管理距离:RIP120IGRP100EIGRP90EIGRP汇总路由一5;外部EIGRP---170;OSPF110BGP200(从IBGP邻居收到的路由)外部BGP—20(从EBGP邻居收到的路由)IS-IS150未知255二、动态路由协议根据是否在一个自治域内部使用,动态路由协议分为内部网关协议QGP)和外部网关协议(EGP)。这里的自治域指一个具有统一管理机构、统一路由策略的网络。自治域内部采用的路由选择协议称为内部网关协议,常用的有RIP、OSPF;外部网关协议主要用于多个自治域之间的路由选择,常用的是BGP和BGP-4。下面分别进行简要介绍。1、RIP路由协议RIP协议最初是为Xerox网络系统的Xeroxpare通用协议而设计的,是Internet中常用的路由协议。RIP采用距离向量算法,即路由器根据距离选择路由,所以也称为距离向量协议。路由器收集所有可到达目的地的不同路径,并且保存有关到达每个目的地的最少站点数的路径信息,除到达目的地的最佳路径外,任何其它信息均予以丢弃。同时路由器也把所收集的路由信息用RIP协议通知相邻的其它路由器。这样,正确的路由信息逐渐扩散到了全网。RIP使用非常广泛,它简单、可靠,便于配置。但是RIP只适用于小型的同构网络,因为它允许的最大站点数为15,任何超过15个站点的目的地均被标记为不可达。而且RIP每隔30s—次的路由信息广播也是造成网络的广播风暴的重要原因之一。2、 OSPF路由协议80年代中期,RIP已不能适应大规模异构网络的互连,0SPF随之产生。它是网间工程任务组织(IETF)的内部网关协议工作组为IP网络而开发的一种路由协议。OSPF是一种基于链路状态的路由协议,需要每个路由器向其同一管理域的所有其它路由器发送链路状态广播信息。在OSPF的链路状态广播中包括所有接口信息、所有的量度和其它一些变量。利用OSPF的路由器首先必须收集有关的链路状态信息,并根据一定的算法计算出到每个节点的最短路径。而基于距离向量的路由协议仅向其邻接路由器发送有关路由更新信息。与RIP不同,OSPF将一个自治域再划分为区,相应地即有两种类型的路由选择方式:当源和目的地在同一区时,采用区内路由选择;当源和目的地在不同区时,则采用区间路由选择。这就大大减少了网络开销,并增加了网络的稳定性。当一个区内的路由器出了故障时并不影响自治域内其它区路由器的正常工作,这也给网络的管理、维护带来方便。3、 BGP和BGP-4路由协议BGP是为TCP/IP互联网设计的外部网关协议,用于多个自治域之间。它既不是基于纯粹的链路状态算法,也不是基于纯粹的距离向量算法。它的主要功能是与其它自治域的BGP交换网络可达信息。各个自治域可以运行不同的内部网关协议。BGP更新信息包括网络号/自治域路径的成对信息。自治域路径包括到达某个特定网络须经过的自治域串,这些更新信息通过TCP传送出去,以保证传输的可靠性。为了满足Internet日益扩大的需要,BGP还在不断地发展。在最新的BGp4中,还可以将相似路由合并为一条路由。4、 路由表项的优先问题在一个路由器中,可同时配置静态路由和一种或多种动态路由。它们各自维护的路由表都提供给转发程序,但这些路由表的表项间可能会发生冲突。这种冲突可通过配置各路由表的优先级来解决。通常静态路由具有默认的最高优先级,当其它路由表表项与它矛盾时,均按静态路由转发。路由共享。三、路由协议路由协议(RoutingProtocol):用于路由器动态寻路由协议找网络最佳路径,保证所有路由器拥有相同的路由表,一般路由协议决定数据包在网络上的行走路径。这类协议的例子有OSPF,RIP等路由协议,通过提供共享路由选择信息的机制来支持被动路由协议。路由选择协议消息在路由器之间传送。路由选择协议允许路由器与其他路由器通信来修改和维护路由选择表。典型的路由选择方式有两种:静态路由和动态路由。1、静态路由是在路由器中设置的固定的路由表。除非网络管理员干预,否则静态路由不会发生变化。由于静态路由不能对网络的改变作出反映,一般用于网络规模不大、拓扑结构固定的网络中。静态路由的优点是简单、高效、可靠。在所有的路由中,静态路由优先级最高。当动态路由与静态路由发生冲突时,以静态路由为准。2、动态路由是网络中的路由器之间相互通信,传递路由信息,利用收到的路由信息更新路由器表的过程。它能实时地适应网络结构的变化。如果路由更新信息表明发生了网络变化,路由选择软件就会重新计算路由,并发出新的路由更新信息。这些信息通过各个网络,引起各路由器重新启动其路由算法,并更新各自的路由表以动态地反映网络拓扑变化。动态路由适用于网络规模大、网络拓扑复杂的网络。当然,各种动态路由协议会不同程度地占用网络带宽和CPU资源。3、静态路由和动态路由的适用情形静态路由和动态路由有各自的特点和适用范围,因此在网络中动态路由通常作为静态路由的补充。当一个分组在路由器中进行寻径时,路由器首先查找静态路由,如果查到则根据相应的静态路由转发分组;否则再查找动态路由。路由信息协议(RIP)简介(RIP/RIP2/RIPng:RoutingInformationProtocol)RIP作为IGP(内部网关协议)中最先得到广泛使用的一种协议,主要应用于AS系统,即自治系统(AutonomousSystem)。连接AS系统有专门的协议,其中最早的这样的协议是“EGP”(外部网关协议),目前仍然应用于因特网,这样的协议通常被视为内部AS路由选择协议。RIP主要设计来利用同类技术与大小适度的网络一起工作。因此通过速度变化不大的接线连接,RIP比较适用于简单的校园网和区域网,但并不适用于复杂网络的情况。RIP是一种分布式的基于距离向量的路由选择协议,是因特网的标准协议,其最大的优点就是简单。RIP协议要求网络中每一个路由器都要维护从它自己到其他每一个目的网络的距离记录。RIP协议将“距离”定义为:从一路由器到直接连接的网络的距离定义为1。从一路由器到非直接连接的网络的距离定义为每经过一个路由器则距离加1。“距离”也称为“跳数”。RIP允许一条路径最多只能包含15个路由器,因此,距离等于16时即为不可达。可见RIP协议只适用于小型互联网。RIP2由RIP而来,属于RIP协议的补充协议,主要用于扩大装载的有用信息的数量,同时增加其安全性能。RIPv1和RIPv2都是基于UDP的协议。在RIP2下,每台主机或路由器通过路由选择进程发送和接受来自UDP端口520的数据包。RIP协议默认的路由更新周期是30S。RIP的特点仅和相邻的路由器交换信息。如果两个路由器之间的通信不经过另外一个路由器,那么这两个路由器是相邻的。RIP协议规定,不相邻的路由器之间不交换信息。路由器交换的信息是当前本路由器所知道的全部信息。即自己的路由表。按固定时间交换路由信息,如,每隔30秒,然后路由器根据收到的路由信息更新路由表。(也可进行相应配置使其触发更新)适用RIP和RIP2主要适用于IPv4网络,而RIPng主要适用于IPv6网络。本文主要阐述RIP及RIP2。RIPng:路由选择信息协议下一代(应用于IPv6)(RIPng:RIPforIPv6)RIPng与RIP1和RIP2两个版本不兼容。RIP协议的“距离”其实就是“跳数”(hopcount),因为每经过一个路由器,跳数就加1。RIP认为好的路由就是它通过的路由器的数目少,即“距离短”。应用RIP(RoutinginformationProtocol)是应用较早、使用较普遍的内部网关协议(InteriorGatewayProtocol,简称IGP),适用于小型同类网络,是典型的距离向量(distance-vector)协议。文档见RFC1058、RFC1723。RIP通过广播UDP报文来交换路由信息,每30秒发送一次路由信息更新。RIP提供跳跃计数(hopcount)作为尺度来衡量路由距离,跳跃计数是一个包到达目标所必须经过的路由器的数目。如果到相同目标有二个不等速或不同带宽的路由器,但跳跃计数相同,则RIP认为两个路由是等距离的。RIP最多支持的跳数为15,即在源和目的网间所要经过的最多路由器的数目为15,跳数16表示不可达。RIP概述-RFC1058-RIP采用贝尔曼一福德(Bellman-Ford)算法-目前RIP有两个版本RIPvl和RIPv2。-RIP有以下一些主要特性:-RIP属于典型的距离向量路由选择协议。-RIP消息通过广播地址255.255.255.255进行发送,RIPv2使用组播地址224.0.0.9发送消息,两者都使用UDP协议的520端口。-RIP以到目的网络的最小跳数作为路由选择度量标准,而不是在链路的带宽和延迟的基础上进行选择。-RIP是为小型网络设计的。它的跳数计数限制为15跳,16跳为不可到达。-RIP-1是一种有类路由协议,不支持不连续子网设计。RIP-2支持CIDR及VLSM可变长子网掩码,使其支持不连续子网设计。-RIP周期性进行完全路由更新,将路由表广播给邻居路由器,广播周期缺省为30秒。-RIP的协议管理距离为120。RIP是路由信息协议(RoutingInformationProtocol)的缩写,采用距离矢量算法。在默认情况下,RIP使用一种非常简单的度量制度:距离就是通往目的站点所需经过的链路数,取值为1~15,数值16表示无穷大。RIP进程使用UDP的520端口来发送和接收RIP分组。RIP分组每隔30s以广播的形式发送一次,为了防止出现“广播风暴”,其后续的的分组将做随机延时后发送。在RIP中,如果一个路由在180s内未被刷,则相应的距离就被设定成无穷大,并从路由表中删除该表项。RIP分组分为两种:请求分组和响应分组。RIP-1被提出较早,其中有许多缺陷。为了改善RIP-1的不足,在RFC1388中提出了改进的RIP-2,并在RFC1723和RFC2453中进行了修订。RIP-2定义了一套有效的改进方案,新的RIP-2支持子网路由选择,支持CIDR,支持组播,并提供了验证机制。RIP-2的特性:RIP-2是一种无类别路由协议(ClasslessRoutingProtocol)0RIP-2协议报文中携带掩码信息,支持VLSM(可变长子网掩码)和CIDR。RIP-2支持以组播方式发送路由更新报文,组播地址为224.0.0.9,减少网络与系统资源消耗。RIP-2支持对协议报文进行验证,并提供明文验证和MD5验证两种方式,增强安全性。RIP-2能够支持VLSM随着OSPF和IS-IS的出现,许多人认为RIP已经过时了。但事实上RIP也有它自己的优点。对于小型网络,RIP就所占带宽而言开销小,易于配置、管理和实现,并且RIP还在大量使用中。但RIP也有明显的不足,即当有多个网络时会出现环路问题。为了解决环路问题,IETF提出了水平分割法,在这个接口收到的路由信息不会再从该接口出去(plit-Horizon)。分割范围解决了两个路由器之间的路由环路问题,但不能防止因网络规模较大、主要由延迟因素产生的环路。触发更新要求路由器在链路发生变化时立即传输它的路由表。这加速了网络的聚合,但容易产生广播泛滥。总之,环路问题的解决需要消耗一定的时间和带宽。若采用RIP协议,其网络内部所经过的链路数不能超过15,这使得RIP协议不适于大型网络。RIP工作原理1、 初始化——RIP[1]初始化时,会从每个参与工作的接口上发送请求数据包。该请求数据包会向所有的RIP路由器请求一份完整的路由表。该请求通过LAN上的广播形式发送LAN或者在点到点链路发送到下一跳地址来完成。这是一个特殊的请求,向相邻设备请求完整的路由更新。2、 接收请求一IP有两种类型的消息,响应和接收消息。请求数据包中的每个路由条目都会被处理,从而为路由建立度量以及路径。RIP采用跳数度量,值为1的意为着一个直连的网络,16,为网络不可达。路由器会把整个路由表作为接收消息的应答返回。3、 接收到响应——路由器接收并处理响应,它会通过对路由表项进行添加,删除或者修改作出更新。4、 常规路由更新和定时——路由器以30秒一次地将整个路由表以应答消息地形式发送到邻居路由器。路由器收到新路由或者现有路由地更新信息时,会设置一个180秒地超时时间。如果180秒没有任何更新信息,路由的跳数设为16。路由器以度量值16宣告该路由,直到刷新计时器从路由表中删除该路由。刷新计时器的时间设为240秒,或者比过期计时器时间多60秒。Cisco还用了第三个计时器,称为抑制计时器。接收到一个度量更高的路由之后的180秒时间就是抑制计时器的时间,在此期间,路由器不会用它接收到的新信息对路由表进行更新,这样能够为网路的收敛提供一段额外的时间。5、 触发路由更新——当某个路由度量发生改变时,路由器只发送与改变有关的路由,并不发送完整的路由表。2、 OSPF协议-开放最短路径优先协议,企业网主要使用的协议优点:技术成熟,碰到的问题基本上在资料上都能够查到,收敛快,由于cisco的力推,会使用的人多缺点:收敛速度,安全性较ISIS差OSPF动态路由协议的特点动态路由协议的特点动态路由协议的特点动态路由协议的特点OSPF全称为开放最短路径优先。“开放”表明它是一个公开的协议,由标准协议组织制定,各厂商都可以得到动态路由协议的细节。“最短路径优先”是该动态路由协议在进行路由计算时执行的算法。OSPF是目前内部网关协议中使用最为广泛、性能最优的一个动态路由。采用OSPF动态路由协议的自治系统,经过合理的规划可支持超过1000台路由器,这一性能是距离向量动态路由如RIP等无法比拟的。距离向量动态路由协议采用周期性地发送整张路由表来使网络中路由器的路由信息保持一致,这个机制浪费了网络带宽并引发了一系列的问题,下面对此将作简单的介绍。路由变化收敛速度是衡量一个动态路由协议好坏的一个关键因素。在网络拓扑发生变化时,网络中的路由器能否在很短的时间内相互通告所产生的变化并进行路由的重新计算,是网络可用性的一个重要的表现方面。OSPF采用一些技术手段(如SPF算法、邻接关系等)避免了路由自环的产生。在网络中,路由自环的产生将导致网络带宽资源的极大耗费,甚至使网络不可用。OSPF协议从根本(算法本身)上避免了自环的产生。采用距离向量协议的RIP等协议,路由自环是不可避免的。为了完善这些动态路由协议,只能采取若干措施,在自环发生前,降低其发生的概率,在自环发生后,减小其影响范围和时间。在IP(IPV4)地址日益匮乏的今天,能否支持变长子网掩码(VLSM)来节省IP地址资源,对一个路由协议来说是非常重要的,OSPF能够满足这一要求。在采用OSPF动态路由协议的网络中,如果通过OSPF计算出到同一目的地有两条以上代你Metric)相等的路由,该协议可以将这些等值路由同时添加到路由表中。这样,在进行转发时可以实现负载分担或负载均衡。在支持区域划分和路由分级管理上,OSPF动态路由协议能够适合在大规模的网络中使用,在协议本身的安全性上,OSPF使用验证,在邻接路由器间进行路由信息通告时可以指定密码,从而确定邻接路由器的合法性,与广播方式相比,用组播地址来发送协议报文可以节省网络带宽资源。从衡量路由协议性能的角度,我们可以看出,OSPF协议确实是一个比较先进的动态路由协议,这也是它得到广泛采用的主要原因。OSPFOSPFOSPFOSPF动态路由协议的工作原理动态路由协议的工作原理动态路由协议的工作原理动态路由协议的工作原理上文提到,OSPF动态路由协议是一种链路状态动态路由协议,那么OSPF是如何来描述链路连接状况呢?抽象模型Modell表示路由器的一个以太网接口不连接其他路由器,只连接了一个以太网段。此时,对于运行OSPF的路由器R1,只能识别本身,无法识别该网段上的设备(主机等);抽象模型Model2表示路由器R1通过点对点链路(如PPP、HDLC等)连接一台路由器R2;抽象模型Model3表示路由器R1通过点对多点(如FrameRelay、X.25等)链路连接多台路由器R3、R4等,此时路由器R5、R6之间不进行互联;抽象模型Model4表示路由器R1通过点对多点(如FrameRelay、X.25等)链路连接多台路由器R5、R6等,此时路由器R5、R6之间互联。以上抽象模型着重于各类链路层动态路由协议的特点,而不涉及具体的链路层动态路由协议细节。该模型基本表达了当前网络链路的连接种类。在在在在OSPFOSPFOSPFOSPF动态路由协议中动态路由协议中动态路由协议中动态路由协议中,,,,分别对以上四种链路状态类型作了描述分别对以上四种链路状态类型作了描述分别对以上四种链路状态类型作了描述分别对以上四种链路状态类型作了描述对于抽象模型Model1(以太网链路),使用LinkID(连接的网段)、Data(掩码)、Type(类型)和Metric(代价)来描述。此时的LinkID即为路由器R1接口所在网段,Data为所用掩码,Type为3(Stubnet),Metric为代价值。对于抽象模型Model2(点对点链路),先使用LinkID(连接的网段)、Data(掩码)、Type(类型)和Metric(代价)来描述接口路由,以上各参数与Model1相似。接下来描述对端路由器R2,四个参数名不变,但其含义有所不同。此时LinkID为路由器R2的RouterID,Data为路由器R2的接口地址,Type为1(Router),Metric仍为代价值。对于抽象模型Model3(点对多点链路,不全连通),先使用LinkID(连接的网段)、Data(掩码)、Type(类型)和Metric(代价)来描述接口路由,以上各参数与Model1相似。接下来分别描述对端路由器R3、R4的方法,与在Model2中描述R2类似。对于抽象模型Model4(点对多点链路,全连通),先使用LinkID(网段中DR的接口地址)、Data(本接口的地址)、Type(类型)和Metric(代价)来描述接口路由。此时Type值为2(Transnet),然后是本网段中DR(指定路由器)描述的连接通告。路由器在通报其获知的链路状态(即上面所述的参数)前,加上LSA头(LinkStateAdvertisementHead),从而生成LSA(链路状态广播)。到此,路由器通过LSA完成周边网络的拓扑结构描述,并发送给网络中的其他路由器。OSPF协议简介OSPF(OpenShortestPathFirst开放式最短路径优先)[1]是一个内部网关协议(InteriorGatewayProtocol,简称IGP),用于在单一自治系统(autonomoussystem,AS)内决策路由。与RIP相比,OSPF是链路状态路由协议,而RIP是距离矢量路由协议。OSPF的协议管理距离(AD)是110。OSPF起源IETF为了满足建造越来越大基于IP网络的需要,形成了一个工作组,专门用于开发开放式的、链路状态路由协议,以便用在大型、异构的IP网络中。新的路由协议已经取得一些成功的一系列私人的、和生产商相关的、最短路径优先(SPF)路由协议为基础,在市场上广泛使用。包括OSPF在内,所有的SPF路由协议基于一个数学算法一Dijkstra算法。这个算法能使路由选择基于链路-状态,而不是距离向量。OSPF由IETF在20世纪80年代末期开发,OSPF是SPF类路由协议中的开放式版本。最初的OSPF规范体现在RFC1131中。这个第1版(OSPF版本1)很快被进行了重大改进的版本所代替,这个新版本体现在RFC1247文档中。RFC1247OSPF称为OSPF版本2是为了明确指出其在稳定性和功能性方面的实质性改进。这个OSPF版本有许多更新文档,每一个更新都是对开放标准的精心改进。接下来的一些规范出现在RFC1583、2178和2328中。OSPF版本2的最新版体现在RFC2328中。最新版只会和由RFC2138、1583和1247所规范的版本进行互操作。链路是路由器接口的另一种说法,因此OSPF也称为接口状态路由协议。OSPF通过路由器之间通告网络接口的状态来建立链路状态数据库,生成最短路径树,每个OSPF路由器使用这些最短路径构造路由表。OSPF路由协议是一种典型的链路状态(Link-state)的路由协议,一般用于同一个路由域内。在这里,路由域是指一个自治系统(AutonomousSystem),即AS,它是指一组通过统一的路由政策或路由协议互相交换路由信息的网络。在这个AS中,所有的OSPF路由器都维护一个相同的描述这个AS结构的数据库,该数据库中存放的是路由域中相应链路的状态信息,OSPF路由器正是通过这个数据库计算出其OSPF路由表的。作为一种链路状态的路由协议,OSPF将链路状态广播数据LSA(LinkStateAdvertisement)传送给在某一区域内的所有路由器,这一点与距离矢量路由协议不同。运行距离矢量路由协议的路由器是将部分或全部的路由表传递给与其相邻的路由器。OSPF的网络类型OSPF定义的5种网络类型:点到点网络(point-to-point),由cisco提出的网络类型,自动发现邻居,不选举DR/BDR,hello时间10s。广播型网络(broadcast),由cisco提出的网络类型,自动发现邻居,选举DR/BDR,hello时间10s。非广播型(NBMA)网络(non-broadcast),由RFC提出的网络类型,手工配置邻居,选举DR/BDR,hello时间30s。点到多点网络(point-to-multipoint),由RFC提出,自动发现邻居,不选举DR/BDR,hello时间30s。5•点到多点非广播,由cisco提出的网络类型,手动配置邻居,不选举DR/BDR,hello时间30s。点到点网络,比如T1线路,是连接单独的一对路由器的网络,点到点网络上的有效邻居总是可以形成邻接关系的,在这种网络上,OSPF包的目标地址使用的是224.0.0.5,这个组播地址称为AllSPFRouters.广播型网络,比如以太网,TokenRing和FDDI,这样的网络上会选举一个DR和BDRQR/BDR的发送的OSPF包的目标地址为224.0.0.5,运载这些OSPF包的帧的目标MAC地址为0100.5E00.0005;而除了DR/BDR以外发送的OSPF包的目标地址为224.0.0.6,这个地址叫AllDRouters.NBMA网络,比如X.25,FrameRelay,和ATM,不具备广播的能力,因此邻居要人工来指定,在这样的网络上要选举DR和BDR,OSPF包采用unicast的方式点到多点网络是NBMA网络的一个特殊配置,可以看成是点到点链路的集合.在这样的网络上不选举DR和BDR.虚链接:OSPF包是以unicast的方式发送OSPF协议主要优点:1、 OSPF是真正的LOOP-FREE(无路由自环)路由协议。源自其算法本身的优点。(链路状态及最短路径树算法)2、 OSPF收敛速度快:能够在最短的时间内将路由变化传递到整个自治系统。3、 提出区域(area)划分的概念,将自治系统划分为不同区域后,通过区域之间的对路由信息的摘要,大大减少了需传递的路由信息数量。也使得路由信息不会随网络规模的扩大而急剧膨胀。4、 将协议自身的开销控制到最小。见下:1) 用于发现和维护邻居关系的是定期发送的是不含路由信息的hello报文,非常短小。包含路由信息的报文时是触发更新的机制。(有路由变化时才会发送)。但为了增强协议的健壮性,每1800秒全部重发一次。2) 在广播网络中,使用组播地址(而非广播)发送报文,减少对其它不运行ospf的网络设备的干扰。3) 在各类可以多址访问的网络中(广播,NBMA),通过选举DR,使同网段的路由器之间的路由交换(同步)次数由O(N*N)次减少为O(N)次。4) 提出STUB区域的概念,使得STUB区域内不再传播引入的ASE路由。5) 在ABR(区域边界路由器)上支持路由聚合,进一步减少区域间的路由信息传递。6) 在点到点接口类型中,通过配置按需播号属性OSPFoverOnDemandCircuits),使得ospf不再定时发送hello报文及定期更新路由信息。只在网络拓扑真正变化时才发送更新信息。5、 通过严格划分路由的级别(共分四极),提供更可信的路由选择。6、 良好的安全性,ospf支持基于接口的明文及md5验证。7、 OSPF适应各种规模的网络,最多可达数千台。3、 ISIS协议-中间系统到中间系统协议,传输网/运营商网络主要使用的协议优点:算法与OSPF类似,收敛快,安全性高缺点:异常处理资料不如OSPF丰富4、 BGP协议-边界网关协议,用于核心网的路由的传递无所谓优缺点,因为它和其他的不重叠,一个简单的应用,比如BGP可以用于网通和电信之间路由的相互传递 ,如果使用其它IGP(OSPF或者ISIS)的话,会由于路由数量太多,无法计算出来路由,或者路由计算非常慢,可以支持百万级别的路由的计算和传递,对设备要求较高,对资源占用较大静态路由是指需要由网络管理员手工配置路由信息。当网络的拓扑结构或链路的状态发生变化时,网络管理员需要手工去修改路由表中相关的静态路由信息。静态路由一般适用于比较简单的网络环境,在这样的环境中,网络管理员易于清楚地了解网络的拓扑结构,便于设置正确的路由信息。使用静态路由的另一个好处是网络安全保密性高。动态路由因为需要路由器之间频繁地交换各自的路由表,而对路由表的分析可以揭示网络的拓扑结构和网络地址等信息。大型和复杂的网络环境通常不宜采用静态路由。一方面,网络管理员难以全面地了解整个网络的拓扑结构另一方面,当网络的拓扑结构和链路状态发生变化时,路由器中的静态路由信息需要大范围地调整,这一工作的难度和复杂程度非常高。5、 eigrpEIGRP路由协议简介是Cisco的私有路由协议,它综合了距离矢量和链路状态2者的优点,它的特点包括:快速收敛链路状态包(Link-StatePacket,LSP)的转发是不依靠路由计算的,所以大型网络可以较为快速的进行收敛.它只宣告链路和链路状态,而不宣告路由,所以即使链路发生了变化不会引起该链路的路由被宣告•但是链路状态路由协议使用的是Dijkstra算法,该算法比较复杂,并且和其他路由协议单独计算路由相比较占CPU和内存资源,EIGRP采用弥散更新算法(DiffusingUpdateAlgorithm),通过多个路由器并行的进行路由计算,这样就可以在无环路产生的情况下快速的收敛.2•减少带宽占用EIGRP不作周期性的更新,它只在路由的路径和速度发生变化以后做部分更新当路径信息改变以后,DUAL只发送那条路由信息改变了的更新,而不是发送整个路由表.和更新传输到一个区域内的所有路由器上的链路状态路由协议相比,DUAL只发送更新给需要该更新信息的路由器。在WAN低速链路上,EIGRP可能会占用大量带宽,默认只占用链路带宽50%,之后发布的IOS允许使用命令ipbandwidth-percenteigrp来修改这一默认值.支持多种网络层协议EIGRP通过使用“协议相关模块”(即protocol-dependentmodulevPDM>),可以支持IPX,ApplleTalk,IP,IPv6和NovellNetware等协议.无缝连接数据链路层协议和拓扑结构EIGRP不要求对OSI参考模型的层2协议做特别的配置.不像OSPFQSPF对不同的层2协议要做不同配置,比如以太网和帧中继EIGRP能够有效的工作在LAN和WAN中,而且EIGRP保证网络及不会产生环路(loop-free);而且配置起来很简单;支持VLSM;它使用组播和单播,不使用广播,这样做节约了带宽;它使用和IGRP一样的度的算法,但是是32位长的;它可以做非等价的路径的负载平衡.EIGRP路由协议优缺点(1)EIGRP路由协议主要优点精确路由计算和多路由支持oEIGRP协议继承了IGRP协议的最大的优点是矢量路由权。EIGRP协议在路由计算中要对网络带宽、网络时延、信道占用率和信道可信度等因素作全面的综合考虑,所以EIGRP的路由计算更为准确,更能反映网络的实际情况。同时EIGRP协议支持多路由,使路由器可以按照不同的路径进行负载分担。较少带宽占用。使用EIGRP协议的对等路由器之间周期性的发送很小的hello报文,以此来保证从前发送报文的有效性。路由的发送使用增量发送方法,即每次只发送发生变化的路由。发送的路由更新报文采用可靠传输,如果没有收到确认信息则重新发送,直至确认。EIGRP还可以对发送的EIGRP报文进行控制,减少EIGRP报文对接口带宽的占用率,从而避免连续大量发送路由报文而影响正常数据业务的事情发生。快速收敛。路由计算的无环路和路由的收敛速度是路由计算的重要指标。EIGRP协议由于使用了DUAL算法,使得EIGRP协议在路由计算中不可能有环路路由产生,同时路由计算的收敛时间也有很好的保证。因为,DUAL算法使得EIGRP在路由计算时,只会对发生变化的路由进行重新计算;对一条路由,也只有此路由影响的路由器才会介入路由的重新计算。MD5认证。为确保路由获得的正确性,运行EIGRP协议进程的路由器之间可以配置MD5认证,对不符合认证的报文丢弃不理,从而确保路由获得的安全。路由聚合。EIGRP协议可以通过配置,对所有的EIGRP路由进行任意掩码长度的路由聚合,从而减少路由信息传输,节省带宽。实现负载分担。去往同一目的的路由表项,可根据接口的速率、连接质量和可靠性等属性,自动生成路由优先级,报文发送时可根据这些信息自动匹配接口的流量,达到几个接口负载分担的目的。配置简单。使用EIGRP协议组建网络,路由器配置非常简单,它没有复杂的区域设置,也无需针对不同网络接口类型实施不同的配置方法。使用EIGRP协议只需使用routereigrp命令在路由器上启动EIGRP路由进程,然后再使用network命令使能网络范围内的接口即可。(2)EIGRP路由协议主要缺点没有区域概念oEIGRP没有区域的概念,而OSPF在大规模网络的情况下,可以通过划分区域来规划和限制网络规模。所以EIGRP适用于网络规模相对较小的网络,这也是矢量-距离路由算法(RIP协议就是使用这种算法)的局限所在。定时发送HELLO报文。运行EIGRP的路由器之间必须通过定时发送HELLO报文来维持邻居关系,这种邻居关系即使在拨号网络上,也需要定时发送HELLO报文,这样在按需拨号的网络上,无法定位这是有用的业务报文还是EIGRP发送的定时探询报文,从而可能误触发按需拨号网络发起连接,尤其在备份网络上,引起不必要的麻烦。所以,一般运行EIGRP的路由器,在拨号备份端口还需配置Dialerlist和Dialergroup,以便过滤不必要的报文,或者运行TRIP协议,这样做增加路由器运行的开销。而OSPF可以提供对拨号网络按需拨号的支持,只用一种路由协议就可以满足各种专线或拨号网络应用的需求。基于分布式的DUAL算法。EIGRP的无环路计算和收敛速度是基于分布式的DUAL算法的,这种算法实际上是将不确定的路由信息散播(向邻居发query报文),得到所有邻居的确认后(reply报文)再收敛的过程,邻居在不确定该路由信息可靠性的情况下又会重复这种散播,因此某些情况下可能会出现该路由信息一直处于活动状态(这种路由被称为活动路由栈),并且,如果在活动路由的这次DUAL计算过程中,出现到该路由的后继(successor)的测量发生变化的情况,就会进入多重计算,这些都会影响DUAL算法的收敛速度。而OSPF算法则没有这种问题,所以从收敛速度上看,虽然整体相近,但在某种特殊情况下,EIGRP还有不理想的情况。EIGRP是Cisco公司的私有协议。Cisco公司是该协议的发明者和唯一具备该协议解释和修改权的厂商。如果要支持EIGRP协议需向Cisco公司购买相应版权,并且Cisco公司修改该协议没有义务通知任何其他厂家和使用该协议的用户。而OSPF是开放的协议,是IETF组织公布的标准。世界上主要的网络设备厂商都支持该协议,所以它的互操作性和可靠性由于公开而得到保障,并且在众多的厂商支持下,该协议也会不断走向更加完善。EIGRP与OSPF的区别EIGRP[1]是cisco专用的,而OSPF则是通用的协议。EIGRP是一个距离矢量协议(有些资料说是混合型的),而OSPF是链路状态协议。EIGRP支持自动汇总功能,它可以在A.B.C类网络的边界实现自动汇总,同时也支持手动配置;而OSPF则不可以,汇总必须手动配置EIGRP的汇聚速度要比OSPF快,因为在它的拓扑图中保存了可选后继,直接后继找不到时可以直接通过可选后继转发。EIGRP的多播地址是224.0.0.10QSPF是224.0.0.5和224.0.0.6。EIGRP的路径度量是复合型的,OSPF则是Cost型的(当然一般的cost还是根据bandwidth来计算的)尽管EIGRP支持路由汇总功能,但是它没有分级(hierachical)路由的概念,不像OSPF那样对网络进行分级。在邻居关系的建立上,EIGRP没有OSPF那么复杂的down-init-twoway的过程,只要一个路由器看到邻居的hello包,它就与之建立邻接关系。在汇总功能的实现上,EIGRP可以在任何路由器的任何接口实现,而OSPF则只能在ABR和ASBR上实现,而且它的路由汇总不是基于接口的。EIGRP支持不等路径度量值的负载均衡,而OSPF则只支持相等度量值的负载均衡。EIGRP使用DUAL算法计算最短路径,而且它采用了有限状态机(finite-statemachine)来跟踪所有的路由信息包,保证无回路(loop-free)以及后继路由的选择。OSPF采用Dijikstra算法计算最短路径,它不采用有限状态机。EIGRP邻接关系的确立只要两个参数相符合就行:K-value和ASnumber;而OSPF的邻接关系的建立需要多个参数符合:hello/deadtimer,authenticationpassword,areaid,stubflag等。最后就是它们配置以及检查(showcommand)上的不同了,这方面不同点很多,就要慢慢体会了。如ospf中的showipospfdatabase对应eigrp中的showipeigrptopology。动态路由协议分为距离向量路由协议和链路状态路由协议,两种协议各有特点,分述如下。距离向量(DV)协议(1) 、距离向量指协议使用跳数或向量来确定从一个设备到另一个设备的距离。不考虑每跳链路的速率。(2) 、距离向量路由协议不使用正常的邻居关系,用两种方法获知拓扑的改变和路由的超时:(3) 、当路由器不能直接从连接的路由器收到路由更新时;(4) 、当路由器从邻居收到一个更新,通知它网络的某个地方拓扑发生了变化。在小型网络中(少于100个路由器,或需要更少的路由更新和计算环境),距离向量路由协议运行得相当好。当小型网络扩展到大型网络时,该算法计算新路由的收敛速度极慢,而且在它计算的过程中,网络处于一种过渡状态,极可能发生循环并造成暂时的拥塞。再者当网络底层链路技术多种多样,带宽各不相同时,距离向量算法对此视而不见。距离向量路由协议的这种特性不仅造成了网络收敛的延时,而且消耗了带宽。随着路由表的增大,需要消耗更多的CPU资源,并消耗了内存。链路状态(LS)路由协议1)、链路状态路由协议没有跳数的限制,使用“图形理论”算法或最短路径优先算法。(2)、链路状态路由协议有更短的收敛时间、支持VLSM(可变长子网掩码)和CIDR。(3)、链路状态路由协议在直接相连的路由之间维护正常的邻居关系。这允许路由更快收敛。链路状态路由协议在会话期间通过交换Hello包(也叫链路状态信息)创建对等关系,这种关系加速了路由的收敛。不像距离向量路由协议那样,更新时发送整个路由表。链路状态路由协议只广播更新的或改变的网络拓扑,这使得更新信息更小,节省了带宽和CPU利用率。另外,如果网络不发生变化,更新包只在特定的时间内发出(通常为30min到2h)。3、常用动态路由协议的分析RIPRIP(路由信息协议)是路由器生产商之间使用的第一个开放标准,是最广泛的路由协议,在所有IP路由平台上都可以得到。当使用RIP时,一台Cisco路由器可以与其他厂商的路由器连接。RIP有两个版本:RIPvl和RIPv2,它们均基于经典的距离向量路由算法,最大跳数为15跳。RIPvl是族类路由(ClassfulRouting)协议,因路由上不包括掩码信息,所以网络上的所有设备必须使用相同的子网掩码,不支持VLSM0RIPv2可发送子网掩码信息,是非族类路由(ClasslessRouting)协议,支持VLSM。RIP使用UDP数据包更新路由信息。路由器每隔30s更新一次路由信息,如果在180s内没有收到相邻路由器的回应,则认为去往该路由器的路由不可用,该路由器不可到达。如果在240s后仍未收到该路由器的应答,则把有关该路由器的路由信息从路由表中删除。RIP具有以下特点:不同厂商的路由器可以通过RIP互联;配置简单;适用于小型网络(小于15跳);RIPv1不支持VLSM;需消耗广域网带宽;需消耗CPU、内存资源。RIP的算法简单,但在路径较多时收敛速度慢,广播路由信息时占用的带宽资源较多,它适用于网络拓扑结构相对简单且数据链路故障率极低的小型网络中,在大型网络中,一般不使用RIP。IGRP内部网关路由协议(InteriorGatewayRoutingProtocol,IGRP)是Cisco公司20世纪80年代开发的,是一种动态的、长跨度(最大可支持255跳)的路由协议,使用度量(向量)来确定到达一个网络的最佳路由,由延时、带宽、可靠性和负载等来计算最优路由,它在同个自治系统内具有高跨度,适合复杂的网络。CiscoIOS允许路由器管理员对IGRP的网络带宽、延时、可靠性和负载进行权重设置,以影响度量的计算。像RIP一样,IGRP使用UDP发送路由表项。每个路由器每隔90s更新一次路由信息,如果270s内没有收到某路由器的回应,则认为该路由器不可到达;如果630s内仍未收到应答,则IGRP进程将从路由表中删除该路由。与RIP相比,IGRP的收敛时间更长,但传输路由信息所需的带宽减少,此外,IGRP的分组格式中无空白字节,从而提高了IGRP的报文效率。但IGRP为Cisco公司专有,仅限于Cisco产品。EIGRP随着网络规模的扩大和用户需求的增长,原来的IGRP已显得力不从心,于是,Cisco公司又开发了增强的IGRP,即EIGRP。EIGRP使用与IGRP相同的路由算法,但它集成了链路状态路由协议和距离向量路由协议的长处,同时加入散播更新算法(DUAL)。EIGRP具有如下特点:快速收敛。快速收敛是因为使用了散播更新算法,通过在路由表中备份路由而实现,也就是到达目的网络的最小开销和次最小开销(也叫适宜后继,feasiblesuccessor)路由都被保存在路由表中,当最小开销的路由不可用时,快速切换到次最小开销路由上,从而达到快速收敛的目的。减少了带宽的消耗oEIGRP不像RIP和IGRP那样,每隔一段时间就交换一次路由信息,它仅当某个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《防雷工程资格培训》课件
- 鸟生物课件教学课件
- 《集体生活成就我》课件
- KTV顾客投诉的原因及课件
- 规划设计服务合同完整版
- 《建筑制图及识》课件
- 《建筑法规课程简介》课件
- 英语基础模块1-U5 We Have Only One Earth
- 酒店承包经营合同范本完整版
- 龙门吊噪音治理工程2024年合同
- 人教版小学三年级语文课外阅读理解精练试题全册
- 胃结构及其功能课件
- 产前诊断(筛查)技术服务申请
- 学校心理健康教育课程设计与教法
- 广播电视编导专业大学生职业生涯规划书
- 2023年12月英语六级真题及参考答案
- Unit+5+The+Monarchs+Journey+Language+points+课件-【知识精讲精研】高中英语外研版(2019)必修第一册+
- 高考日语副助词默写单
- 高一政治学科期末考试质量分析报告(7篇)
- 项目立项增资申请书
- 中国近现代史纲要社会实践报告十二篇
评论
0/150
提交评论