版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省成都市西川中学数学九上期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下面空心圆柱形物体的左视图是()A. B. C. D.2.甲、乙、丙三人站成一排拍照,则甲站在中间的概率是()A.16 B.13 C.13.由二次函数可知()A.其图象的开口向下 B.其图象的对称轴为直线C.其顶点坐标为 D.当时,随的增大而增大4.如图,在△OAB中,∠AOB=55°,将△OAB在平面内绕点O顺时针旋转到△OA′B′的位置,使得BB′∥AO,则旋转角的度数为()A.125° B.70° C.55° D.15°5.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与相似的是()A. B. C. D.6.已知一斜坡的坡比为,坡长为26米,那么坡高为()A.米 B.米 C.13米 D.米7.如图,⊙O是△ABC的外接圆,已知AD平分∠BAC交⊙O于点D,AD=5,BD=2,则DE的长为()A. B. C. D.8.如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:29.如图,正方形的四个顶点在半径为的大圆圆周上,四条边都与小圆都相切,过圆心,且,则图中阴影部分的面积是()A. B. C. D.10.一元二次方程的解是()A.5或0 B.或0 C. D.011.当k>0时,下列图象中哪些可能是y=kx与y=在同一坐标系中的图象()A. B. C. D.12.如果,那么的值为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,分别以四边形ABCD的各顶点为圆心,以1长为半径画弧所截的阴影部分的面积的和是________.14.如图,已知l1∥l2∥l3,直线l4、l5被这组平行线所截,且直线l4、l5相交于点E,已知AE=EF=1,FB=3,则=_____.15.已知正六边形的边长为4cm,分别以它的三个不相邻的顶点为圆心,边长为半径画弧(如图),则所得到的三条弧的长度之和为cm.(结果保留π)16.二次函数的最小值是.17.四边形ABCD是☉O的内接四边形,,则的度数为____________.18.如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED的正切值为_____.三、解答题(共78分)19.(8分)如图,在▱ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.20.(8分)小瑜同学想测量小区内某栋楼房MA的高度,设计测量方案如下:她从楼底A处前行5米到达B处,沿斜坡BD向上行走16米,到达坡顶D处(A、B、C在同一条直线上),已知斜坡BD的坡角α为12.8°,小瑜的眼睛到地面的距离DE为1.7米,她站在坡顶测得楼顶M的仰角恰好为45°.根据以上数据,请你求出楼房MA的高度.(计算结果精确到0.1米)(参考数据:sin12.8°≈,cos12.8°≈,tan12.8°≈)21.(8分)如图,抛物线y=-x2+bx+3与x轴交于A,B两点,与y轴交于点C,其中点A(-1,0).过点A作直线y=x+c与抛物线交于点D,动点P在直线y=x+c上,从点A出发,以每秒个单位长度的速度向点D运动,过点P作直线PQ∥y轴,与抛物线交于点Q,设运动时间为t(s).(1)直接写出b,c的值及点D的坐标;(2)点E是抛物线上一动点,且位于第四象限,当△CBE的面积为6时,求出点E的坐标;(3)在线段PQ最长的条件下,点M在直线PQ上运动,点N在x轴上运动,当以点D、M、N为顶点的三角形为等腰直角三角形时,请求出此时点N的坐标.22.(10分)如图,中,,,为内部一点,.求证:.23.(10分)甲、乙、丙三位同学在知识竞赛问答环节中,采用抽签的方式决定出场顺序.求甲比乙先出场的概率.24.(10分)如图,甲分为三等分数字转盘,乙为四等分数字转盘,自由转动转盘.(1)转动甲转盘,指针指向的数字小于3的概率是;(2)同时自由转动两个转盘,用列举的方法求两个转盘指针指向的数字均为奇数的概率.25.(12分)已知反比例函数的图象经过点A(2,6).(1)求这个反比例函数的解析式;(2)这个函数的图象位于哪些象限?y随x的增大如何变化?(3)点B(3,4),C(5,2),D(,)是否在这个函数图象上?为什么?26.如图,已知抛物线y=﹣x2+x+4,且与x轴相交于A,B两点(B点在A点右侧)与y轴交于C点.(1)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由.(2)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.
参考答案一、选择题(每题4分,共48分)1、A【解析】试题分析:找出从几何体的左边看所得到的视图即可.解:从几何体的左边看可得,故选A.2、B【解析】试题分析:画树状图为:共有6种等可能的结果数,其中甲站在中间的结果数为2,所以甲站在中间的概率=26=1考点:列表法与树状图法.3、B【分析】根据二次函数的图像与性质即可得出答案.【详解】A:a=3,所以开口向上,故A错误;B:对称轴=4,故B正确;C:顶点坐标为(4,-2),故C错误;D:当x<4时,y随x的增大而减小,故D错误;故答案选择D.【点睛】本题考查的是二次函数,比较简单,需要熟练掌握二次函数的图像与性质.4、B【分析】据两直线平行,内错角相等可得,根据旋转的性质可得,然后利用等腰三角形两底角相等可得,即可得到旋转角的度数.【详解】,,又,中,,旋转角的度数为.故选:.【点睛】本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.5、B【分析】求出△ABC的三边长,再分别求出选项A、B、C、D中各三角形的三边长,根据三组对应边的比相等判定两个三角形相似,由此得到答案.【详解】如图,,AC=2,,A、三边依次为:,,1,∵,∴A选项中的三角形与不相似;B、三边依次为:、、1,∵,∴B选项中的三角形与相似;C、三边依次为:3、、,∵,∴C选项中的三角形与不相似;D、三边依次为:、、2,∵,∴D选项中的三角形与不相似;故选:B.【点睛】此题考查网格中三角形相似的判定,勾股定理,需根据勾股定理分别求每个三角形的边长,判断对应边的比是否相等是解题的关键.6、C【分析】根据坡比算出坡角,再根据坡角算出坡高即可.【详解】解:设坡角为∵坡度∴.∴.坡高=坡长.故选:C.【点睛】本题考查三角函数的应用,关键在于理解题意,利用三角函数求出坡角.7、D【分析】根据AD平分∠BAC,可得∠BAD=∠DAC,再利用同弧所对的圆周角相等,求证△ABD△BED,利用其对应边成比例可得,然后将已知数值代入即可求出DE的长.【详解】解:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠DBC=∠DAC(同弧所对的圆周角相等),∴∠DBC=∠BAD,∴△ABD△BED,∴,∴DE=故选D.【点睛】本题考查圆周角定理以及相似三角形的判定与性质,根据其定理进行分析.8、B【详解】∵四边形ABCD是平行四边形,∴AB∥CD∴∠EAB=∠DEF,∠AFB=∠DFE∴△DEF∽△BAF∴∵,∴DE:AB=2:5∵AB=CD,∴DE:EC=2:3故选B9、C【分析】由于圆是中心对称图形,则阴影部分的面积等于大圆的四分之一,即可求解.【详解】解:由于圆是中心对称图形,则阴影部分的面积等于大圆的四分之一.故阴影部分的面积=.故选:C.【点睛】本题利用了圆是中心对称图形,圆面积公式及概率的计算公式求解,熟练掌握公式是本题的解题关键.10、B【解析】根据因式分解法即可求出答案.【详解】∵5x2=x,∴x(5x﹣1)=0,∴x=0或x.故选:B.【点睛】本题考查了一元二次方程,解答本题的关键是熟练运用一元二次方程的解法,本题属于基础题型.11、B【分析】由系数即可确定与经过的象限.【详解】解:经过第一、三象限,经过第一、三象限,B选项符合.故选:B【点睛】本题考查了一次函数与反比例函数的图像,灵活根据的正负判断函数经过的象限是解题的关键.12、C【分析】由已知条件2x=3y,根据比例的性质,即可求得答案.【详解】解:∵2x=3y,∴=.故选C.【点睛】本题考查比例的性质,本题考查比较简单,解题的关键是注意比例变形与比例的性质.二、填空题(每题4分,共24分)13、【分析】根据四边形内角和定理得图中四个扇形正好构成一个半径为1的圆,因此其面积之和就是圆的面积.【详解】解:∵图中四个扇形的圆心角的度数之和为四边形的四个内角的和,且四边形内角和为360°,∴图中四个扇形构成了半径为1的圆,∴其面积为:πr2=π×12=π.故答案为:π.【点睛】此题主要考查了四边形内角和定理,扇形的面积计算,得出图中阴影部分面积之和是半径为1的圆的面积是解题的关键.14、【分析】由l1∥l2,根据根据平行线分线段成比例定理可得FG=AC;由l2∥l3,根据根据平行线分线段成比例定理可得==.【详解】∵l1∥l2,AE=EF=1,∴==1,∴FG=AC;∵l2∥l3,∴==,∴==,故答案为.【点睛】本题考查了平行线分线段成比例定理,掌握平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例是解题的关键.15、8π【解析】试题分析:先求得正多边形的每一个内角,然后由弧长计算公式.解:方法一:先求出正六边形的每一个内角==120°,所得到的三条弧的长度之和=3×=8π(cm);方法二:先求出正六边形的每一个外角为60°,得正六边形的每一个内角120°,每条弧的度数为120°,三条弧可拼成一整圆,其三条弧的长度之和为8πcm.故答案为8π.考点:弧长的计算;正多边形和圆.16、﹣1.【解析】试题分析:∵=,∵a=1>0,∴x=﹣2时,y有最小值=﹣1.故答案为﹣1.考点:二次函数的最值.17、130°【分析】根据圆内接四边形的对角互补,得∠ABC=180°-∠D=130°.【详解】解:∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠D=180°,∵∠D=50°,∴∠ABC=180°-∠D=130°.故答案为:130°.【点睛】本题考查了圆内接四边形的性质,圆内接四边形对角互补.18、.【详解】解:根据圆周角定理可得∠AED=∠ABC,所以tan∠AED=tan∠ABC=.故答案为:.【点睛】本题考查圆周角定理;锐角三角函数.三、解答题(共78分)19、证明见解析.【解析】根据平行四边形的性质以及全等三角形的判定方法证明出△DOE≌△BOF,得到OE=OF,利用对角线互相平分的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用对角线互相垂直的平行四边形是菱形得出四边形BFDE为菱形.【详解】∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,,∴△DOE≌△BOF(ASA),∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,∴四边形BFDE为菱形.【点睛】本题考查了菱形的判定,平行四边形的性质以及全等三角形的判定与性质等知识,得出OE=OF是解题关键.20、楼房MA的高度约为25.8米【分析】根据△BCD是直角三角形,利用正弦和余弦可以求出CD,BC的长度,则可得到EC,EF的长度,再根据,,利用四边形ECAF是矩形,即可得到MA的长.【详解】解:在Rt△BCD中,∴,在矩形ECAF中,AF=EC=5.22,EF=AC=20.6在Rt△EFM中,∴,答:楼房MA的高度约为25.8米【点睛】本题考查的是解直角三角形的应用仰角俯角问题和坡度坡角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.21、(1)b=2,c=1,D(2,3);(2)E(4,-5);(3)N(2,0),N(-4,0),N(-2.5,0),N(3.5,0)【分析】(1)将点A分别代入y=-x2+bx+3,y=x+c中求出b、c的值,确定解析式,再解两个函数关系式组成的方程组即可得到点D的坐标;(2))过点E作EF⊥y轴,设E(x,-x2+2x+3),先求出点B、C的坐标,再利用面积加减关系表示出△CBE的面积,即可求出点E的坐标.(3)分别以点D、M、N为直角顶点讨论△MND是等腰直角三角形时点N的坐标.【详解】(1)将A(-1,0)代入y=-x2+bx+3中,得-1-b+3=0,解得b=2,∴y=-x2+2x+3,将点A代入y=x+c中,得-1+c=0,解得c=1,∴y=x+1,解,解得,(舍去),∴D(2,3).∴b=2,c=1,D(2,3).(2)过点E作EF⊥y轴,设E(x,-x2+2x+3),当y=-x2+2x+3中y=0时,得-x2+2x+3=0,解得x1=3,x2=-1(舍去),∴B(3,0).∵C(0,3),∴,∴,解得x1=4,x2=-1(舍去),∴E(4,-5).(3)∵A(-1,0),D(2,3),∴直线AD的解析式为y=x+1,设P(m,m+1),则Q(m,-m2+2m+3),∴线段PQ的长度h=-m2+2m+3-(m+1)=,∴当=0.5,线段PQ有最大值.当∠D是直角时,不存在△MND是等腰直角三角形的情形;当∠M是直角时,如图1,点M在线段DN的垂直平分线上,此时N1(2,0);当∠M是直角时,如图2,作DE⊥x轴,M2E⊥HE,N2H⊥HE,∴∠H=∠E=90,∵△M2N2D是等腰直角三角形,∴N2M2=M2D,∠N2M2D=90,∵∠N2M2H=∠M2DE,∴△N2M2H≌△M2DE,∴N2H=M2E=2-0.5=1.5,M2H=DE,∴E(2,-1.5),∴M2H=DE=3+1.5=4.5,∴ON2=4.5-0.5=4,∴N2(-4,0);当∠N是直角时,如图3,作DE⊥x轴,∴∠N3HM3=∠DEN3=90,∵△M3N3D是等腰直角三角形,∴N3M3=N3D,∠DN3M3=90,∵∠DN3E=∠N3M3H,∴△DN3E≌△N3M3H,∴N3H=DE=3,∴N3O=3-0.5=2.5,∴N3(-2.5,0);当∠N是直角时,如图4,作DE⊥x轴,∴∠N4HM4=∠DEN4=90,∵△M4N4D是等腰直角三角形,∴N4M4=N4D,∠DN4M4=90,∵∠DN4E=∠N4M4H,∴△DN4E≌△N4M4H,∴N4H=DE=3,∴N4O=3+0.5=3.5,∴N4(3.5,0);综上,N(2,0),N(-4,0),N(-2.5,0),N(3.5,0).【点睛】此题是二次函数的综合题,考查待定系数法求函数解析式;根据函数性质得到点坐标,由此求出图象中图形的面积;还考查了图象中构成的等腰直角三角形的情况,此时依据等腰直角三角形的性质,求出点N的坐标.22、详见解析【分析】利用等式的性质判断出∠PBC=∠PAB,即可得出结论;【详解】解:,,又,,,又,.【点睛】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠PBC=∠PAB是解本题的关键.23、【分析】首先根据题意用列举法列出所有等可能的结果与甲比乙先出场的情况,再利用概率公式求解即可求得答案.【详解】解:甲、乙、丙三位同学采用抽签的方式决定出场顺序,所有可能出现的结果有:(甲,乙,丙)、(甲、丙、乙)(乙,甲,丙)、(乙,丙,甲)(丙,甲,乙)、(丙,乙,甲)共有6种,它们出现的可能性相同.所有的结果中,满足“甲比乙先出场”(记为事件)的结果有3中,所以【点睛】本题考查了列举法求概率,用到的知识点为:概率=所求情况数与总情况数之比.24、(1);(2)【解析】(1)根据甲盘中的数字,可判断求出概率;(2)列出符合条件的所有可能,然后确定符合条件的可能,求出概率即可.【详解】(1)甲转盘共有1,2,3三个数字,其中小于3的有1,2,∴P(转动甲转盘,指针指向的数字小于3)=,故答案为.(2)树状图如下:由树状图知,共有12种等可能情况,其中两个转盘指针指向的数字为奇数的有4种情况,所以两个转盘指针指向的数字均为奇数的概率P==.25、(1);(2)这个函数的图象位于第一、三象限,在每一个象限内,y随x的增大而减小;(3)点B,D在函数的图象上,点C不在这个函数图象上.【分析】(1)利用待定系数法求函数解析式;(2)根据反比例函数的性质求解;(3)根据反比例函数图象上点的坐标特征进行判断.【详解】(1)设这个反比例函数的解析式为,因为在其图象上,所以点的坐标满足,即,,解得,所以,这个反比例函数解析式为;(2)这个函数的图象位于第一、三象限,在每一个象限内,随的增大而减小;(3)因为点,满足,所以点,在函数的图象上,点的坐标不满足,所以点不在这个函数图象上.【点睛】本题考查了待定系数法求反比例函数的解析式:先设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);再把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;然后解方程,求出待定系数;最后写出解析式.也考查了反比例函数的性质.26、(1)存在点P,使△PBC的面积最大,最大面积是2;(2)M点的坐标为(1﹣2,﹣1)、(2,6)、(6,1)或(1+2,﹣﹣1).【分析】(1)利用二次函数图象上点的坐标特征可求出点C的坐标,由点B、C的坐标,利用待定系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 下载教学美术课件教学课件
- 《新制度经济学导论》课件
- 厨房里的危险课件
- 糖尿病合并慢性肾病
- 中期职业规划
- 三年级掌声课件下载
- 《数字校园建设方案》课件
- (更新)2024年春泸州市小语学业质量监测题(五年级)参考答案6.27
- 大学体育与健康 教案 羽毛球-6
- 天津市有哪些甲级资质的建筑设计院
- 人教版数学三年级上册《分数的初步认识》课件 (共7张PPT)
- 2021小学语文《习作例文-风向袋的制作》说课稿及教学反思
- 外科学教学课件:周围神经损伤
- 杆塔分解组立
- JJG 861-2007 酶标分析仪检定规程-(高清现行)
- 13培智二年级语文上册《土木火》教案
- 中医气功学导论期末试卷附答案
- 人类命运共同体视域下小学国际理解教育的实践探索
- 保安队排班表
- 50Hz微电子相敏轨道电路课件
- 中考数学阅读理解型问题复习
评论
0/150
提交评论