2024届内蒙古呼和浩特市名校九年级数学第一学期期末教学质量检测模拟试题含解析_第1页
2024届内蒙古呼和浩特市名校九年级数学第一学期期末教学质量检测模拟试题含解析_第2页
2024届内蒙古呼和浩特市名校九年级数学第一学期期末教学质量检测模拟试题含解析_第3页
2024届内蒙古呼和浩特市名校九年级数学第一学期期末教学质量检测模拟试题含解析_第4页
2024届内蒙古呼和浩特市名校九年级数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届内蒙古呼和浩特市名校九年级数学第一学期期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在中,,,若,则的长为().A. B. C. D.2.等于()A. B.2 C.3 D.3.已知一个几何体如图所示,则该几何体的主视图是()A. B.C. D.4.某商场降价销售一批名牌衬衫,已知所获利润y(元)与降价x(元)之间的关系是y=-2x2+60x+800,则利润获得最多为()A.15元 B.400元 C.800元 D.1250元5.抛物线的顶点坐标是()A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(1,2)6.如图,在平面直角坐标系中,正方形OABC的顶点O、B的坐标分别是(0,0),(2,0),则顶点C的坐标是()A.(1,1) B.(﹣1,﹣1) C.(1,﹣1) D.(﹣1,1)7.已知关于x的一元二次方程有两个相等的实数根,则a的值是()A.4 B.﹣4 C.1 D.﹣18.对于题目“抛物线l1:(﹣1<x≤2)与直线l2:y=m(m为整数)只有一个交点,确定m的值”;甲的结果是m=1或m=2;乙的结果是m=4,则()A.只有甲的结果正确B.只有乙的结果正确C.甲、乙的结果合起来才正确D.甲、乙的结果合起来也不正确9.对于反比例函数,下列说法不正确的是()A.图像分布在第一、三象限 B.当时,随的增大而减小C.图像经过点 D.若点都在图像上,且,则10.如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为()A. B. C. D.11.如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则的最小值是()A. B. C. D.1012.矩形ABCD中,AB=10,,点P在边AB上,且BP:AP=4:1,如果⊙P是以点P为圆心,PD长为半径的圆,那么下列结论正确的是()A.点B、C均在⊙P外 B.点B在⊙P外,点C在⊙P内C.点B在⊙P内,点C在⊙P外 D.点B、C均在⊙P内二、填空题(每题4分,共24分)13.已知点A(a,2019)与点A′(﹣2020,b)是关于原点O的对称点,则a+b的值为_____.14.已知圆锥的底面半径为3,母线长为7,则圆锥的侧面积是_____.15.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2020的值为_____.16.若点C是线段AB的黄金分割点且AC>BC,则AC=_____AB(用含无理数式子表示).17.如图,矩形ABCD中,AB=4,BC=6,E是边AD的中点,将△ABE折叠后得到△A′BE,延长BA′交CD于点F,则DF的长为______.18.某种商品每件进价为10元,调查表明:在某段时间内若以每件x元(10≤x≤20且x为整数)出售,可卖出(20﹣x)件,若使利润最大,则每件商品的售价应为_____元.三、解答题(共78分)19.(8分)某单位准备组织员工到武夷山风景区旅游,旅行社给出了如下收费标准(如图所示):设参加旅游的员工人数为x人.(1)当25<x<40时,人均费用为元,当x≥40时,人均费用为元;(2)该单位共支付给旅行社旅游费用27000元,请问这次参加旅游的员工人数共有多少人?20.(8分)如图,阳光下,小亮的身高如图中线段所示,他在地面上的影子如图中线段所示,线段表示旗杆的高,线段表示一堵高墙.请你在图中画出旗杆在同一时刻阳光照射下形成的影子;如果小亮的身高,他的影子,旗杆的高,旗杆与高墙的距离,请求出旗杆的影子落在墙上的长度.21.(8分)解分式方程:(1).(2).22.(10分)2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距4米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:)23.(10分)如图,一次函数y=k1x+b的图象与x轴、y轴分别交于A,B两点,与反比例函数y=的图象分别交于C,D两点,点C(2,4),点B是线段AC的中点.(1)求一次函数y=k1x+b与反比例函数y=的解析式;(2)求△COD的面积;(3)直接写出当x取什么值时,k1x+b<.24.(10分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?25.(12分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.26.如图,在平行四边形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,AE=CG,AH=CF,且EG平分∠HEF.(1)求证:△AEH≌△CGF.(2)若∠EFG=90°.求证:四边形EFGH是正方形.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据余弦的定义和性质求解即可.【详解】∵,,∴∴故答案为:A.【点睛】本题考查了锐角三角函数的问题,掌握余弦的定义和性质是解题的关键.2、A【分析】先计算60度角的正弦值,再计算加减即可.【详解】故选A.【点睛】本题考查了特殊角的三角函数值的计算,能够熟练掌握特殊角的三角函数值是解题的关键.3、A【分析】主视图是从物体正面看,所得到的图形.【详解】该几何体的主视图是:故选:A【点睛】本题考查了三视图的知识,主视图是从物体正面看到的图,掌握定义是关键.4、D【分析】将函数关系式转化为顶点式,然后利用开口方向和顶点坐标即可求出最多的利润.【详解】解:y=-2x2+60x+800=-2(x-15)2+1250∵-2<0故当x=15时,y有最大值,最大值为1250即利润获得最多为1250元故选:D.【点睛】此题考查的是利用二次函数求最值,掌握将二次函数的一般式转化为顶点式求最值是解决此题的关键.5、D【分析】根据顶点式,顶点坐标是(h,k),即可求解.【详解】∵顶点式,顶点坐标是(h,k),∴抛物线的顶点坐标是(1,2).故选D.6、C【详解】解:由图可知,点B在第四象限.各选项中在第四象限的只有C.故选C.7、D【详解】解:根据一元二次方程根的判别式得,△,解得a=﹣1.故选D.8、C【分析】画出抛物线l1:y=﹣(x﹣1)2+4(﹣1<x≤2)的图象,根据图象即可判断.【详解】解:由抛物线l1:y=﹣(x﹣1)2+4(﹣1<x≤2)可知抛物线开口向下,对称轴为直线x=1,顶点为(1,4),如图所示:∵m为整数,由图象可知,当m=1或m=2或m=4时,抛物线l1:y=﹣(x﹣1)2+4(﹣1<x≤2)与直线l2:y=m(m为整数)只有一个交点,∴甲、乙的结果合在一起正确,故选:C.【点睛】本题考查了二次函数图象与一次函数图象的交点问题,作出函数的图象是解题的关键.9、D【分析】根据反比例函数图象的性质对各选项分析判断后即可求解.【详解】解:A、k=8>0,∴它的图象在第一、三象限,故本选项正确,不符合题意;B、k=8>0,当x>0时,y随x的增大而减小,故本选项正确,不符合题意;C、∵,∴点(-4,-2)在它的图象上,故本选项正确,不符合题意;D、点A(x1,y1)、B(x2、y2)都在反比例函数的图象上,若x1<x2<0,则y1>y2,故本选项错误,符合题意.故选D.【点睛】本题考查了反比例函数的性质,对于反比例函数,(1)k>0,反比例函数图象在一、三象限,在每一个象限内,y随x的增大而减小;(2)k<0,反比例函数图象在第二、四象限内,在每一个象限内,y随x的增大而增大.10、D【详解】如图,连接AB,由圆周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴.故选D.11、B【解析】如图,作DH⊥AB于H,CM⊥AB于M.由tanA==2,设AE=a,BE=2a,利用勾股定理构建方程求出a,再证明DH=BD,推出CD+BD=CD+DH,由垂线段最短即可解决问题.【详解】如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠AEB=90°,∵tanA==2,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,∴a=2或-2(舍弃),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AB,∴CM=BE=4(等腰三角形两腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最小值为4.故选B.【点睛】本题考查解直角三角形,等腰三角形的性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,用转化的思想思考问题,属于中考常考题型.12、A【分析】根据BP=4AP和AB的长度求得AP的长度,然后利用勾股定理求得圆P的半径PD的长;根据点B、C到P点的距离判断点P与圆的位置关系即可【详解】根据题意画出示意图,连接PC,PD,如图所示∵AB=10,点P在边AB上,BP:AP=4:1∴AP=2,BP=8又∵AD=∴圆的半径PD=PC=∵PB=8>6,PC=>6∴点B、C均在⊙P外故答案为:A【点睛】本题考查了点和圆的位置关系的判定,根据点和圆心之间的距离和半径的大小关系作出判断即可二、填空题(每题4分,共24分)13、1.【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】解:∵点A(a,2019)与点A′(﹣2020,b)是关于原点O的对称点,∴a=2020,b=﹣2019,∴a+b=1.故答案为:1.【点睛】此题主要考查了关于原点对称的点的性质,正确记忆横纵坐标的符号是解题关键.14、21π.【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】解:圆锥的侧面积=×2π×3×7=21π.故答案为21π.【点睛】本题考查圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15、1【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=1.故答案为:1.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.16、【分析】直接利用黄金分割的定义求解.【详解】解:∵点C是线段AB的黄金分割点且AC>BC,∴AC=AB.故答案为:.【点睛】本题考查了黄金分割的定义,点C是线段AB的黄金分割点且AC>BC,则,正确理解黄金分割的定义是解题的关键.17、【分析】根据点E是AD的中点以及翻折的性质可以求出AE=DE=EA',然后利用“HL”证明△EDF和△EA'F全等,根据全等三角形对应边相等可证得DF=A'F;设FD=x,表示出FC、BF,然后在Rt△BCF中,利用勾股定理列方程即可得解.【详解】∵E是AD的中点,∴AE=DE,∵△ABE沿BE折叠后得到△A'BE,∴AE=EA',AB=BA',∴ED=EA',∵在矩形ABCD中,∴∠A=∠D=90°,∴∠EA'F=90°,∵在Rt△EDF和Rt△EA'F中,∵,∴Rt△EDF≌Rt△EA'F(HL),∴DF=FA',设DF=x,则BF=4+x,CF=4﹣x,在Rt△BCF中,62+(4﹣x)2=(4+x)2,解得:x=.故答案为:.【点睛】本题主要考查折叠的性质与勾股定理,利用勾股定理列出方程,是解题的关键.18、1【解析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.【详解】解:设利润为w元,则w=(20﹣x)(x﹣10)=﹣(x﹣1)2+25,∵10≤x≤20,∴当x=1时,二次函数有最大值25,故答案是:1.【点睛】本题考查了二次函数的应用,此题为数学建模题,借助二次函数解决实际问题.三、解答题(共78分)19、(1)1000﹣20(x﹣25);1.(2)30名【分析】(1)求出当人均旅游费为1元时的员工人数,再根据给定的收费标准即可求出结论;(2)由25×1000<210<2×1可得出25<x<2,由总价=单价×数量结合(1)的结论,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:(1)∵25+(1000﹣1)÷20=2(人),∴当25<x<2时,人均费用为[1000﹣20(x﹣25)]元,当x≥2时,人均费用为1元.(2)∵25×1000<210<2×1,∴25<x<2.由题意得:x[1000﹣20(x﹣25)]=210,整理得:x2﹣75x+1350=0,解得:x1=30,x2=45(不合题意,舍去).答:该单位这次共有30名员工去旅游.【点睛】本题考查了列代数式以及一元二次方程的应用,解题的关键是:(1)根据数量关系,列出代数式;(2)找准等量关系,正确列出一元二次方程.20、(1)作图见解析;(2)米.【分析】(1)连接AC,过D点作AC的平行线即可;(2)过M作MN⊥DE于N,利用相似三角形列出比例式求出旗杆的高度即可.【详解】(1)如图所示,线段MG和GE是旗杆在阳光下形成的影子.(2)过点M作MN⊥DE于点N.设旗杆的影子落在墙上的高度为xm,由题意得△DMN∽△ACB,∴.又∵AB=1.6m,BC=2.4m,DN=DE-NE=(15-x)m,MN=EG=16m,∴,解得x=.答:旗杆的影子落在墙上的高度为m.【点睛】本题考查了相似三角形的知识,解题的关键是正确的构造直角三角形.21、(1);(2)无解【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)两边同时乘以去分母得:,去括号得:,移项合并得:,解得:,检验:时,,是原方程的解;(2)两边同时乘以去分母得:,去括号得:,移项合并得:,检验:时,,是原方程的增根,故原方程无解.【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.22、5.5米【分析】过点C作CD⊥AB于点D,设CD=x,在Rt△ACD中表示出AD,在Rt△BCD中表示出BD,再由AB=4米,即可得出关于x的方程,解出即可.【详解】解:过点C作CD⊥AB于点D,设CD=x,在Rt△ACD中,∠CAD=30°,则AD=CD=x.在Rt△BCD中,∠CBD=45°,则BD=CD=x.由题意得,x﹣x=4,解得:.答:生命所在点C的深度为5.5米.23、(1)y1=x+2;y2=;(2)S△COD=6;(3)当0<x<2或x<﹣4时,k1x+b<.【分析】(1)把点C的坐标代入反比例函数,利用待定系数法即可求得反比例函数的解析式,作轴于E,根据题意求得B的坐标,然后利用待定系数法求得一次函数的解析式;

(2)联立方程求得D的坐标,然后根据即可求得△COD的面积;

(3)根据图象即可求得时,自变量x的取值范围.【详解】(1)∵点C(2,4)在反比例函数y=的图象上,∴,∴;如图,作CE⊥x轴于E,∵C(2,4),点B是线段AC的中点,∴B(0,2),∵B、C在的图象上,∴,解得,∴一次函数为;(2)由,解得或,∴D(﹣4,﹣2),∴;(3)由图可得,当0<x<2或x<﹣4时,.【点睛】本题考查了反比例函数和一次函数的交点问题,待定系数法求一次函数和二次函数的解析式,方程组的解以及三角形的面积等,求得B点的坐标是解题的关键.24、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.【解析】分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.详解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),补全的条形统计图如图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×=108°,(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论