




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省苏州市张家港市梁丰初级中学九年级数学第一学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.对于两个不相等的实数,我们规定符号表示中的较大值,如:,按照这个规定,方程的解为()A.2 B.C.或 D.2或2.如图,在中,,,,将绕点顺时针旋转度得到,当点的对应点恰好落在边上时,则的长为()A.1.6 B.1.8 C.2 D.2.63.小明和小华玩“石头、剪子、布”的游戏.若随机出手一次,则小华获胜的概率是()A. B. C. D.4.如图,P为平行四边形ABCD的对称中心,以P为圆心作圆,过P的任意直线与圆相交于点M,N.则线段BM,DN的大小关系是()A.BM>DN B.BM<DN C.BM=DN D.无法确定5.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A. B. C. D.6.袋中有5个白球,x个红球,从中随机摸出一个球,恰为红球的概率为,则x为A.25 B.20 C.15 D.107.把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是()A. B. C. D.8.在平面直角坐标系中,点E(﹣4,2),点F(﹣1,﹣1),以点O为位似中心,按比例1:2把△EFO缩小,则点E的对应点E的坐标为(
)A.(2,﹣1)或(﹣2,1) B.(8,﹣4)或(﹣8,4) C.(2,﹣1) D.(8,﹣4)9.一种商品原价元,经过两次降价后每盒26元,设两次降价的百分率都为,则满足等式()A. B. C. D.10.若抛物线y=(x-m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>-1 D.-1<m<0二、填空题(每小题3分,共24分)11.如图,在△ABC中,D、E分别是边AB、AC上的两点,且DEBC,BD=AE,若AB=12cm,AC=24cm,则AE=_____.12.将一副三角板按图所示的方式叠放在一起,使直角的顶点重合于点,并能使点自由旋转,设,,则与之间的数量关系是__________.13.在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD'P,PD'的延长线交边AB于点M,过点B作BN∥MP交DC于点N,连接AC,分别交PM,PB于点E,F.现有以下结论:①连接DD',则AP垂直平分DD';②四边形PMBN是菱形;③AD2=DP•PC;④若AD=2DP,则;其中正确的结论是_____(填写所有正确结论的序号)14.用一个圆心角90°,半径为8㎝的扇形纸围成一个圆锥,则该圆锥底面圆的半径为.15.从1,2,3,4,5,6,7,8,9这九个自然数中,任取一个数是奇数的概率是.16.如图,在中,交于点,交于点.若、、,则的长为_________.17.抛物线y=2(x−3)2+4的顶点坐标是__________________.18.如图,在直角坐标系中,已知点,,,,对述续作旋转变换,依次得、、、...,则的直角顶点的坐标为________.三、解答题(共66分)19.(10分)已知抛物线与轴交于A,B两点(A在B左边),与轴交于C点,顶点为P,OC=2AO.(1)求与满足的关系式;(2)直线AD//BC,与抛物线交于另一点D,△ADP的面积为,求的值;(3)在(2)的条件下,过(1,-1)的直线与抛物线交于M、N两点,分别过M、N且与抛物线仅有一个公共点的两条直线交于点G,求OG长的最小值.20.(6分)甲、乙两人用如图所示的转盘(每个转盘被分成面积相等的6个扇形)做游戏,转动转盘停止时,得到指针所在区域的数字,若指针落在分界线上,则不计入次数,重新转动转盘记数.(1)任意转动转盘一次,求指针落在奇数区域的概率;(2)若游戏规则如下:甲乙分别转盘一次,记下两次指针所在区域数字,若两次的数字为一奇一偶,则甲赢;若两次的数字同为奇数或同为偶数,则乙赢.请用列表法或画树状图的方法计算甲、乙获胜的概率,并说明这个游戏规则是否公平.21.(6分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB绕原点顺时针旋转后得到的△,并写出点的坐标;(2)在(1)的条件下,求线段在旋转过程中扫过的扇形的面积.22.(8分)某校有一露天舞台,纵断面如图所示,AC垂直于地面,AB表示楼梯,AE为舞台面,楼梯的坡角∠ABC=45°,坡长AB=2m,为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD,使∠ADC=30°(1)求舞台的高AC(结果保留根号)(2)楼梯口B左侧正前方距离舞台底部C点3m处的文化墙PM是否要拆除?请说明理由.23.(8分)一件商品进价100元,标价160元时,每天可售出200件,根据市场调研,每降价1元,每天可多售出10件,反之,价格每提高1元,每天少售出10件.以160元为基准,标价提高m元后,对应的利润为w元.(1)求w与m之间的关系式;(2)要想获得利润7000元,标价应为多少元?24.(8分)如图,这是一个小正方体所搭几何体的俯视图,正方形中的数字表示在该位置小正方体的个数.请你画出它的主视图和左视图.25.(10分)解方程:2(x-3)2=x2-1.26.(10分)如图,在圆中,弦,点在圆上(与,不重合),联结、,过点分别作,,垂足分别是点、.(1)求线段的长;(2)点到的距离为3,求圆的半径.
参考答案一、选择题(每小题3分,共30分)1、D【分析】分两种情况讨论:①,②,根据题意得出方程求解即可.【详解】有意义,则①当,即时,由题意得,去分母整理得,解得经检验,是分式方程的解,符合题意;②当,即时,由题意得,去分母整理得,解得,,经检验,,是分式方程的解,但,∴取综上所述,方程的解为2或,故选:D.【点睛】本题考查了新型定义下的分式方程与解一元二次方程,理解题意,进行分类讨论是解题的关键.2、A【分析】由将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,则可求得答案.【详解】由旋转的性质可知,,∵,,∴为等边三角形,∴,∴,故选A.【点睛】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB3、A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小华获胜的情况数,再利用概率公式即可求得答案.【详解】解:画树状图得:
∵共有9种等可能的结果,小华获胜的情况数是3种,
∴小华获胜的概率是:=.
故选:A.【点睛】此题主要考查了列表法和树状图法求概率知识,用到的知识点为:概率=所求情况数与总情况数之比.4、C【解析】分析:连接BD,根据平行四边形的性质得出BP=DP,根据圆的性质得出PM=PN,结合对顶角的性质得出∠DPN=∠BPM,从而得出三角形全等,得出答案.详解:连接BD,因为P为平行四边形ABCD的对称中心,则P是平行四边形两对角线的交点,即BD必过点P,且BP=DP,∵以P为圆心作圆,∴P又是圆的对称中心,∵过P的任意直线与圆相交于点M、N,∴PN=PM,∵∠DPN=∠BPM,∴△PDN≌△PBM(SAS),∴BM=DN.点睛:本题主要考查的是平行四边形的性质以及三角形全等的证明,属于中等难度的题型.理解平行四边形的中心对称性是解决这个问题的关键.5、B【分析】画出树状图,根据概率公式即可求得结果.【详解】画树状图,得∴共有8种情况,经过每个路口都是绿灯的有一种,∴实际这样的机会是.故选:B.【点睛】本题考查随机事件的概率计算,关键是要熟练应用树状图,属基础题.6、B【解析】考点:概率公式.分析:根据概率的求法,除去红球的概率,就是白球的概率.找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:从中任意取一个,恰为红球的概率为4/5,,那从中任意取一个,恰为白球的概率就为1/5,据题意得5/(5+x)=1/5,解得x=1.∴袋中有红球1个.故选B.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m/n7、A【解析】试题分析:根据平行投影特点以及图中正六棱柱的摆放位置即可求解.把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.考点:平行投影.8、A【分析】利用位似比为1:2,可求得点E的对应点E′的坐标为(2,-1)或(-2,1),注意分两种情况计算.【详解】∵E(-4,2),位似比为1:2,∴点E的对应点E′的坐标为(2,-1)或(-2,1).故选A.【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.注意位似的两种位置关系.9、C【分析】等量关系为:原价×(1-下降率)2=26,把相关数值代入即可.【详解】解:第一次降价后的价格为45(1-x),
第二次降价后的价格为45(1-x)·(1-x)=45(1-x)2,
∴列的方程为45(1-x)2=26,
故选:C.【点睛】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.10、B【分析】利用y=ax2+bx+c的顶点坐标公式表示出其顶点坐标,根据顶点在第一象限,所以顶点的横坐标和纵坐标都大于0列出不等式组.【详解】顶点坐标(m,m+1)在第一象限,则有解得:m>0,故选B.考点:二次函数的性质.二、填空题(每小题3分,共24分)11、1cm【分析】由题意直接根据平行线分线段成比例定理列出比例式,进行代入计算即可得到答案.【详解】解:∵DE//BC,∴,即,解得:AE=1.故答案为:1cm.【点睛】本题考查的是平行线分线段成比例定理,由题意灵活运用定理、找准对应关系是解题的关键.12、【分析】分重叠和不重叠两种情况讨论,由旋转的性质,即可求解.【详解】如图,由题意得:,,,.如图,由题意得:,,,,.综上所述,,故答案为:.【点睛】本题考查了旋转的性质,灵活运用旋转的性质是本题的关键.13、①②③【分析】根据折叠的性质得出AP垂直平分DD',判断出①正确.过点P作PG⊥AB于点G,易知四边形DPGA,四边形PCBG是矩形,所以AD=PG,DP=AG,GB=PC,易证△APG∽△PBG,所以PG2=AG•GB,即AD2=DP•PC判断出③正确;DP∥AB,所以∠DPA=∠PAM,由题意可知:∠DPA=∠APM,所以∠PAM=∠APM,由于∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB,从而可知PM=MB=AM,又易证四边形PMBN是平行四边形,所以四边形PMBN是菱形;判断出②正确;由于,可设DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,从而求出GB=PC=4,AB=AG+GB=5,由于CP∥AB,从而可证△PCF∽△BAF,△PCE∽△MAE,从而可得,,从而可求出EF=AF﹣AE=AC﹣=AC,从而可得,判断出④错误.【详解】解:∵将△ADP沿AP翻折得到△AD'P,∴AP垂直平分DD',故①正确;解法一:过点P作PG⊥AB于点G,∴易知四边形DPGA,四边形PCBG是矩形,∴AD=PG,DP=AG,GB=PC∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,∴,∴PG2=AG•GB,即AD2=DP•PC;解法二:易证:△ADP∽△PCB,∴,由于AD=CB,∴AD2=DP•PC;故③正确;∵DP∥AB,∴∠DPA=∠PAM,由题意可知:∠DPA=∠APM,∴∠PAM=∠APM,∵∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB∴AM=PM,PM=MB,∴PM=MB,又易证四边形PMBN是平行四边形,∴四边形PMBN是菱形;故②正确;由于,可设DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,∵PG2=AG•GB,∴4=1•GB,∴GB=PC=4,AB=AG+GB=5,∵CP∥AB,∴△PCF∽△BAF,∴,∴又易证:△PCE∽△MAE,AM=AB=∴,∴,∴EF=AF﹣AE=AC﹣=AC∴,故④错误,即:正确的有①②③,故答案为:①②③.【点睛】本题是一道关于矩形折叠的综合题目,考查的知识点有折叠的性质,矩形的性质,相似三角形的性质,菱形的判定等,此题充分考查了学生对所学知识点的掌握情况以及综合利用能力,是一道很好的题目.14、1.【解析】试题分析:扇形的弧长是:,设底面半径是,则,解得.故答案是:1.考点:圆锥的计算.15、.【解析】试题分析:∵从1到9这九个自然数中一共有5个奇数,∴任取一个数是奇数的概率是:.故答案是.考点:概率公式.16、6【分析】接运用平行线分线段成比例定理列出比例式,借助已知条件即可解决问题.【详解】,∵DE∥BC,∴,即,解得:,故答案为:.【点睛】本题主要考查了平行线分线段成比例定理及其应用问题;运用平行线分线段成比例定理正确写出比例式是解题的关键.17、(3,4)【解析】根据二次函数配方的图像与性质,即可以求出答案.【详解】在二次函数的配方形式下,x-3是抛物线的对称轴,取x=3,则y=4,因此,顶点坐标为(3,4).【点睛】本题主要考查二次函数的图像与性质.18、(1200,0)【分析】根据题目提供的信息,可知旋转三次为一个循环,图中第三次和第四次的直角顶点的坐标相同,由①→③时直角顶点的坐标可以求出来,从而可以解答本题.【详解】由题意可得,
△OAB旋转三次和原来的相对位置一样,点A(-3,0)、B(0,4),
∴OA=3,OB=4,∠BOA=90°,∴,∴旋转到第三次时的直角顶点的坐标为:(12,0),
∵301÷3=100…1
∴旋转第301次的直角顶点的坐标为:(1200,0),
故答案为:(1200,0).【点睛】本题考查了坐标与图形变化-旋转,是对图形变化规律,观察出每三次旋转为一个循环组依次循环,并且下一组的第一个直角三角形与上一组的最后一个直角三角形的直角顶点重合是解题的关键.三、解答题(共66分)19、(1);(2);(3).【分析】(1)将抛物线解析式进行因式分解,可求出A点坐标,得到OA长度,再由C点坐标得到OC长度,然后利用OC=2AO建立等量关系即可得到关系式;(2)利用待定系数法求出直线BC的k,根据平行可知AD直线的斜率k与BC相等,可求出直线AD解析式,与抛物线联立可求D点坐标,过P作PE⊥x轴交AD于点E,求出PE即可表示△ADP的面积,从而建立方程求解;(3)为方便书写,可设抛物线解析式为:,设,,过点M的切线解析式为,两抛物线与切线联立,由可求k,得到M、N的坐标满足,将(1,-1)代入,推出G为直线上的一点,由垂线段最短,求出OG垂直于直线时的值即为最小值.【详解】解:(1)令y=0,,解得,令x=0,则∵,A在B左边∴A点坐标为(-m,0),B点坐标为(4m,0),C点坐标为(0,-4am2)∴AO=m,OC=4am2∵OC=2AO∴4am2=2m∴(2)∵∴C点坐标为(0,-2m)设BC直线为,代入B(4m,0),C(0,-2m)得,解得∵AD∥BC,∴设直线AD为,代入A(-m,0)得,,∴∴直线AD为直线AD与抛物线联立得,,解得或∴D点坐标为(5m,3m)又∵∴顶点P坐标为如图,过P作PE⊥x轴交AD于点E,则E点横坐标为,代入直线AD得∴PE=∴S△ADP=解得∵m>0∴∴.(3)在(2)的条件下,可设抛物线解析式为:,设,,过点M的切线解析式为,将抛物线与切线解析式联立得:,整理得,∵,∴方程可整理为∵只有一个交点,∴整理得即解得∴过M的切线为同理可得过N的切线为由此可知M、N的坐标满足将代入整理得将(1,-1)代入得在(2)的条件下,抛物线解析式为,即∴整理得∴G点坐标满足,即G为直线上的一点,当OG垂直于直线时,OG最小,如图所示,直线与x轴交点H(5,0),与y轴交点F(0,)∴OH=5,OF=,FH=∵∴∴OG的最小值为.【点睛】本题考查二次函数与一次函数的综合问题,难度很大,需要掌握二次函数与一次函数的图像与性质和较强的数形结合能力.20、(1);(2)游戏规则公平,理由详见解析【分析】(1)直接根据概率公式求解即可得出答案;
(2)根据题意画出树状图得出所有等可能的情况数,再找出符合条件的情况数,然后根据概率公式即可得出答案.【详解】解:(1)P(指针落在奇数区域)=.(2)列表如下:(画树形图评分方案同列表)1234561(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由表可知,P(甲获胜)=P(一奇一偶)=,P(乙获胜)=P(同奇或同偶)=,P(甲获胜)=P(乙获胜)=,所以,游戏规则公平【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.21、(1)图见解析,点A1坐标是(1,-4);(2)【分析】(1)据网格结构找出点A、B绕点O按照顺时针旋转90°后的对应点A1、B1的位置,然后顺次O、A1、B1连接即可,再根据平面直角坐标系写出A1点的坐标;(2)利用扇形的面积公式求解即可,利用网格结构可得出.【详解】(1)点A1坐标是(1,-4)(2)根据题意可得出:∴线段在旋转过程中扫过的扇形的面积为:.【点睛】本题考查的知识点是旋转变换以及扇形的面积公式,熟练掌握网格结构,准确找出对应点的位置是解题的关键.22、(1)m;(2)不需拆除文化墙PM,理由见解析.【分析】(1)根据锐角三角函数,即可求出AC;(2)由题意可知:CM=3m,根据锐角三角函数即可求出DC,最后比较DC和CM的大小即可判断.【详解】解:(1)在Rt△ABC中,∠ABC=45°,坡长AB=2m,∴AC=AB·sin∠ABC=m答:舞台的高AC为m;(2)不需拆除文化墙PM,理由如下,由题意可知:CM=3m在Rt△ADC中,∠ADC=30°,AC=m∴DC=m∵m<3m∴DC<CM∴不需拆除文化墙PM.【点睛】此题考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国玻璃胶市场发展现状及前景趋势分析报告
- 科技背景下情境教学在小学科学教育中的创新实践
- 栏目投资合同范本
- 金融理财合同范本
- 2025-2030年中国槟榔行业发展动态及前景趋势分析报告
- 小树购销合同范本
- 2025-2030年中国杉木市场运行动态及前景趋势分析报告
- 科技助力网络游戏行业中的教育新模式
- 2025-2030年中国成套电气产品行业运行状况及前景趋势分析报告
- 科技竞赛中如何进行成功的项目设计与管理
- 2024年河南郑州二七区侯寨中心卫生院招聘笔试真题
- 中国糖尿病防治指南+2024+解读
- 岗位职责心得体会(2篇)
- 2025年上海宝冶集团限公司招聘历年高频重点提升(共500题)附带答案详解
- 机械设计基础 课件 01机械设计概论
- GB/T 6822-2024船体防污防锈漆体系
- 全国第三届职业技能大赛(智能网联汽车装调运维)选拔赛理论考试题库(含答案)
- 电信网络诈骗犯罪的特征、治理困境及对策建议
- 救护车挂靠私立医院协议书(2篇)
- 《血透患教》课件
- app 购买合同范例
评论
0/150
提交评论