建筑施工外文翻译-深基坑施工的安全监测和预警_第1页
建筑施工外文翻译-深基坑施工的安全监测和预警_第2页
建筑施工外文翻译-深基坑施工的安全监测和预警_第3页
建筑施工外文翻译-深基坑施工的安全监测和预警_第4页
建筑施工外文翻译-深基坑施工的安全监测和预警_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中文4068字附录1.外文资料原件及译文〔1〕外文资料原件SafetyMonitoringandEarlyWarningforDeepFoundationPitConstructionHaibiaoWANG【1】,HaixuYANG【2】,XibinDONG【3】,andSongyuanNI【4】1.SchoolofEngineeringTechnique,NortheastForestryUniversity,Harbin,Heilongjiang150040,China;PH(086)451-82191771;email:whbcumt@1632.SchoolofCivilEngineering,NortheastForestryUniversity,Harbin,Heilongjiang150040,China;PH(086)451-82190402;email:yhxcumt@1633.SchoolofEngineeringTechnique,NortheastForestryUniversity,Harbin,Heilongjiang150040,China;PH(086)451-82190392;email:yhxcumt@1634.SchoolofEngineeringTechnique,NortheastForestryUniversity,Harbin,Heilongjiang150040,China;PH(086)451-82190335;email:sdrznsy@163ABSTRACTBasedonanengineeringproject,thispaperinitiallyestablishesanobservationpointforfoundationpitandthendeterminesmonitorwarningvalue.Duringprojectconstruction,wecarriedoutanexperimentonthehorizontalmovementandsettlementandinclinationofadjacentbuildingsandpromptlymonitoredthefoundationpit.,Scientificanalysisofthedataispresented.Thisworkisdesignedtoprovideforeffectivemeasurestoimplementsecurityalertsforfoundationconstruction.Detailedanalysisexaminesthecausesofdeformationoffoundationpitandoffersareasonabletreatmentmeasure.Resultsoffersomescientificbasisandtechnicalmeasurestoguaranteedeepfoundationprojectconstructionsecurityandmoreknowledgeableengineeringconstruction.WiththerapiddevelopmentofurbanizationinChina,thedeepexcavationworksrequirehavebeenputforwardstrictdemandregulationsconcerningduetotherequirementsofthespatiallocation,structuralstabilityandusingfunction.Deepexcavationengineeringismostlycarriedoutinareasofheavytrafficanddenseconstruction.Thecomplexityassociatedwithdeepexcavationdepthanddifficultconstructioncreatesenvironmentswhereseriousaccidentscanoccur.Thedeepexcavationworkisawide-rangingandintegratedengineeringprocess.Previousresearchonaccidentsinnationaldeepfoundationpitengineeringfoundthegeneralaccidentratiowasabout20%ofthatofthedeepexcavationswork(Tang,1997).Mostaccidentsinurbanareaswerecausedbyfoundationpitsupport.Indeepexcavationengineering,boththestrengthanddeformationofthesupportingstructureandthesurroundingenvironmentaffectedbypitdeformationshouldbeconsidered(Sun,2006).Thepitsupportsystemsarealwaystemporaryfacilitieswithfewersafetyconsiderationsandmorehazards.Workingstatusandconditionsaremorecomplicatedanduncertain.Thus,duringtheconstructionprocess,dynamicmonitoringandcontrolisveryimportant.Thecontentofdeepexcavation-sitemonitoringgenerallyincludesthehorizontaldisplacementofsupportingstructure,tiltdisplacementofneighboringbuildings,sedimentationofadjacentroadsandsoon.Amonitoringcrewshouldprovidetimelyfeedbackinformation(Liu,2006)todetectanyproblemsandprovideearlywarningsforreducingdisasters.Amonitoringprogramthatprovidescriticalinformationandmanagesdeepexcavationconstructionscientificallyandeffectivelyisthekeytosuccessfuldeepexcavationconstruction(Liuetal.,2007).1.ENGINEERINGBACKGROUNDThedeepfoundationpitengineeringwaslocatedatthecitycenter.Thegroundformtypeofgeologicalinvestigationworksisthetectonicdenudationandtheslowhillockatslopebase,whichwasequaltotheforefrontofthirdterraceoftheYangtzeRiverandthesouthwestborderedonthefirstterraceoftheChengduplain.Soilconditions.ThroughthefieldinvestigationbytheGeologicalSurveyDepartment,thesoilconditionsattheengineeringsiteareshownasTable1.Table1.Physical-mechanicsindexoffoundationsoil.SoildensityPlasticityCohesionInternalNo.NameofSoilSamples

Γ/kN.m-3

Indexc/kpafrictionAngleφ/01-1Miscellaneousfillsoil19.113.15201-2Plainsoil19.311.815122-1Siltclay19.512.325143-1Clay18.513.1

4216Hydrologicalgeologyconditionsofunderground.Surfacewateroftheproposedsiteisnotpresent-development,andtheundergroundwaterwasdominatedbythebedrockfracturewater.andthesmallamountoftheupperperchedwaterfilledinthe1-1layerofsoil-with-filled.Theymainlyweresuppliedbytheprecipitationandinfiltrationofsurfacerunoff.Thewaterleveloftheupperperchedwaterisdiscontinuousandhadsmallerwatervolume.Thebedrockfracturewatergrewwellnearbythecontactfacebetweenthebedrockandtheoverburdenlayer,andformedthepassagewayofundergroundwateralongthepenetrationcrevassepartly.Thus,theundergroundwaterseepedoutfromthesurfacealongtheslopewhenthesideslopewasexcavated.Theresultsoftheanalysisofenvironmentalconditionsandwaterqualityofgroundwatersamplesindicatedthatthegroundwaterinthesitedidnotcorrodeaconcretestructure,buthadweakcorrosivenesstothesteelstructure.2.DESIGNOFFOUNDATIONPITSUPPORTSTRUCTUREThepitsupportingschemegenerallyisclassifiedtoisoftwokinds:oneistheearthnailwall,andantheronethesecondisananchor-retainingpile.Theearthnailwallismadeupofthereinforcedsoil,andtheearthnailandtheboardwhichwasplacedinthesoil.Giventhestrengthenoftheearthnailinsituandthecombinationwiththespraying-upsurface,thenaturalsoilbodyformstheearthbulkhead.Thiswhichissimilartoagravityretainingwallthatresiststheearthpressurecomingfromthewallandtheotherexternalforcesandenhancesthestabilityoftheentiresideslope(foundationpit).Anchor-retainingpiletakesthedrillholefillingpileastheretainingwall,andthepileandtheanchorrodaffectscommonlytoachievethestabilityofslope.Mechanismofanchor-retainingpileisthatthedenseslopeprotectionpileshavehighBendingResistanceandshearcapability,simultaneouslytheanchorsectionoftheanchorrodandthesoilbodytakethepretensionstrengthtogethertothedenseslopeprotectionpiles,andpreventdeformationoffoundationpitsupportingsystem.Combinedeffectofanchorrodandslopeprotectionpilesenhancesthestabilityofentiresupportsandprotectionsystem.Anchor-retainingpileissuitabletoallkindsofclay,sandysoilandtheearthlayerwithhighergroundwaterlevel,especiallythecohesivesoilperipheralwithbigcentralizedloadsorvaryingloads(Lu,2003).Forthedeeperexcavationoffoundationpit,basedontheprincipleofguaranteedsafety,thisprojectproposedtouseanchor-retainingpileforsupportingthefoundationintheproject.(1)InADsectionoffoundationpit,thefollowingparametersweresetup:900mmofguardstakepilediameter,1300mmofpilesinterval,14meterslengthoffillingpilewithman-powerdighole,15°inclinationangleand15mlengthforpileofnon-prestressedanchorrodwhichwasestablished3munderthenaturalground.(2)InABaxissectionoffoundationpit,thefollowingparametersweresetup:900mmofguardstakepilediameter,1300mmofpilesinterval,13.4meterslengthoffillingpilewithman-powerdighole,15°inclinationangleand15mlengthforpileofnon-prestressedanchorrodwhichwasestablished3munderthenaturalground.(3)InBCsectionoffoundationpit,thefollowingparametersweresetup:1000mmofguardstakepilediameter,1300mmofpilesinterval,7meterslengthoffillingpilewithman-powerdighole,15°inclinationangleand15mlengthforpileofnon-pre-stressedanchorrod.(4)InABaxissectionoffoundationpit,thefollowingparametersweresetup:1000mmofguardstakepilediameter,1300mmofpilesinterval,7meterslengthoffillingpilewithman-powerdighole,15°inclinationangleand16mlengthforpileofnonprestressedanchorrod.3.FOUNDATIONPITMONITORINGThisfoundationpitengineeringmonitoringrestson《theEngineeringsurveyStandard》(GB50026-93)and《ConstructionDistortionSurveyRegulations》〔JGJ/T8-97〕.Thetotallengthofthefoundationpitis176meters,thebiggestdiggingdepthis9.8meters,andthesmallestdiggingdepthis4.2meters.Accordingtothestandard,thesecurityratingofthisfoundationpitengineeringisfirst-level.Beforeprojectconstructionofthefoundationpitengineering,referencepointsB1andB2wereestablishedinadvance.Thecoordinatesystemofthehorizontaldisplacementmonitoringwassetupaccordingtothereferencepoints.Thehorizontaldisplacementsobservedwereonetimeevery5daysduringtheprogressofprojectconstruction.3.1ObservationPointArrangementTotal15observationpointsweresetupseparatelyaroundthefoundationpitformonitoringthehorizontaldisplacementofthesupportingandprotectingstructuretop.Thisprojectinstalledtheobservationpointsundergroundduring5days.Thearrangementofobservationpointswereshowninfigure1:3.2FoundationPitMonitoringFacilitiesAccordingto《EngineeringsurveyStandard》,tosatisfythebuildingsafetyfortificationrequirement,thehorizontaldisplacementmonitoringintheprojectconstructionoffoundationpitengineeringusestotalstationTOPCOMGTS-701.ThesettlementobservationusedlevelbrowserTOPCOMAT-G2.Theelevationprobableerrorinthesettlementmonitoringpointsshouldnotbebiggerthan±0.2mm,andtheelevationdifferenceerrorintheadjacentdeformationmonitoringpointsshouldnotbebiggerthan0.13mm(Longetal.,2005).3.3MonitoringSecurityValueAccordingtotheprojectstandardandthedeterminationprincipleofsecurityvalue,thesecurityvalueofthefoundationpitengineeringwasdeterminedasfollows:thehorizontaldisplacementaroundthefoundationpitdidnotsurpass40mm,andthedisplacementspeeddidnotbebiggerthan5mm/d;fortheroadsettlement,thesettlementvaluedidnotsurpass30mmandthesettlementspeeddidnotbebiggerthan2mm/d;forthesettlementandinclinationrateofadjacentbuildings,thebiggestsettlementdifferencesoftwonearbytestpointsdidnotsurpass3‰.Fig.1Arrangementofhorizontaldisplacementobservationpoints.3.3MonitoringSecurityValueAccordingtotheprojectstandardandthedeterminationprincipleofsecurityvalue,thesecurityvalueofthefoundationpitengineeringwasdeterminedasfollows:thehorizontaldisplacementaroundthefoundationpitdidnotsurpass40mm,andthedisplacementspeeddidnotbebiggerthan5mm/d;fortheroadsettlement,thesettlementvaluedidnotsurpass30mmandthesettlementspeeddidnotbebiggerthan2mm/d;forthesettlementandinclinationrateofadjacentbuildings,thebiggestsettlementdifferencesoftwonearbytestpointsdidnotsurpass3‰.4.MONITORINGRESULTSANDANALYSISOFTHEFOUNDATIONPITAftertheexcavationandthefoundationconstruction,themonitoringresultswererecordedandarrangedandanalyzedforearlywarningtimelyforfoundationpit.Thetime-historycurves(fig.2~fig.9)correspondstotheinitialperiodatfourstageswhichincludethatthefirstlayerexcavation(theexcavationdepthwasabout4m)andthesecondlayerexcavation(theexcavationdepthwasabout6m)andthethirdlayerwasfull-depthexcavationanddemolishingsupportingandprotectingsystem.4.1MonitoringandAnalysisofHorizontalDisplacementInthehorizontaldisplacementmonitoringforthesealingbeamsofthesupportingandprotectingstructureoffoundationpit,thehorizontaldisplacementmonitoringresultsofsupportingandprotectingstructurearoundthefoundationpitareshowninFig.2toFig.5.Thehorizontaldisplacementtime-historycurveshowedthatthehorizontaldisplacementoftheperipheralsupportingandprotectingsystemincreasesfastinshort-termandthenbecomesgraduallysteady.Thehorizontaldisplacementtime-historycurvealsoindicatedthatthehorizontaldisplacementoftheABsectionisbigger,with40.8mmatspotS5,33.0mmatspotS6,27.5mmatspotS4,25.6mmatspotS3,32.6mmatspotS13oftheCDsection.Amongthese,thedisplacementofspotS5achievesthesecurityvalue,andthatofS6,S13approachthesecurityvalue.Thetestgroupgavethewarningwhensubmittingtestresultstimely,madetheriskprompt,andproposedthesupportingandprotectingstructureprocessingschemefinally.Fig.2Time-historychartofhorizontalFig.3Time-historychartofhorizontaldisplacementmonitoringofthedisplacementmonitoringofthesupportsandprotectionsinADsectionsupportsandprotectionsinABsectionFig.4Time-historychartofhorizontalFig.5.Time-historychartofhorizontaldisplacementmonitoringofthedisplacementmonitoringofthesupportsandprotectionsinBCsection.supportsandprotectionsinCDsection.4.2InclinationMonitoringandAnalysisofFoundationPitDuringeachearlystagefromfoundationexcavationtodemolishingsupportingandprotectingsystem,inclinationrateincreasesfastattheshort-term,thenbecomessteadygradually.TheinclinationobservedvalueoftheQ2,Q3andQ4is1.18‰,1.05‰,0.86‰respectively,andotherobservedvaluearesmaller;andtheobservedvaluedevelopsquicklywhendemolishingthesupports,asshowninfig.6andfig.7.Forguaranteeingthesceneconstructionsafety,themeasurementresultsweresubmittedtoConstructionOrganization.Fig.6.Thetime-historychartofFig.7.Thetime-historychartinclinationofadjacentbuildingofinclinationofadjacentbuildingmonitoringinABsection.monitoringinBC、CDsection.4.3MonitoringandanalysisaboutsettlementofthefoundationpitDuringeachearlystagefromfoundationexcavationtodemolishingsupportingandprotectingsystem,thesettlementincreasesfastattheshort-term,andthenbecomessteadygradually,andthesettlementincreasesfastafterdemolishingthesupports.SettlementobservedvalueoftheC2,C3andC4is16.5m,15.5m,13.2mrespective,otherobservedvalueissmall,asshowninfig.8andfig.9.Forsafety,themeasurementresultsweresubmittedtoConstructionOrganization.Fig.8.Thetime-historychartofsettlementFig.9.Thetime-historychartofsettlementofroadsmonitoringinAB、ADsection.ofroadsmonitoringinBC、CDsection.4.4ForewarningManagementandSafetyControlInthecourseofsafetymonitoringofthefoundationpit,itisanimportantworkbeforesafetysupervisiontodeterminemonitorwarningvaluereasonablyaccordingtopitbracingcalculation.Itcanbringdisadvantageousinfluencetothefoundationpitmanagementifthemonitorwarningvalueisoversizedortoosmall.Whenthemonitorvalueachievesorapproachesthesecurityvalue,itwillimplementthesafeearlywarningplanpromptly.Themonitoringpersonnelshouldsendtheforewarningdocumenttodevelopmentorganizationandtheoverseeingunitpromptly,andinformtheConstructionUnitandtheDesigningDepartment.TheConstructionUnitcallstherelatedpersonneltocarryonthesceneinvestigation,coordinateorganizationpromptly,formulatescientificeffectivetechnicalmeasuresandcontrolthesecurityofthefoundationpit.Ontheonehanditshouldmonitoritsforewarningspotstrictly,ontheotherhanditalsorequeststheconstructionunittocarryonthefoundationpitworkaccordingtotheprovisionsintheconstructionprocessandexecutereinforcementprocessingdeferringtothetechnicalprogram.Inthecourseofsafetymonitoringofthefoundationpit,settlementofroadsandinclinationofadjacentbuildingmonitoringvaluewassmallerthanthewarningvalue.Inthehorizontaldisplacementobservationofthefoundationpit,displacementincreasedfastwhenexcavating(depthwas4.2m)thefirstlayer,andthedevelopmentspeedwasrapid.Fortheincreasingtendencyisobvious,theobservationfrequencywasincreasedforpartialobservationpoints,soastotheinclinationobservation.Therefore,theriskwarningofthefoundationpitwasgiven.Intheproposedplan,strengthenmeasurewasadoptedtothesupportingandprotectingsystem,notonlythekneebracingbutalsotwobracesinthebroadsidewereincreased.Allthesehadtheverygoodeffectsforthestabilitytothefoundationpit.Thensecondexcavatingandcomprehensiveexcavatingwerecarriedon,afterstrengtheningthesupports,themovementisstable.Butafterdemolishingthesupports,thehorizontaldisplacementofthefoundationpitincreasesrapidlyoncemore,whichshowsthevalidityofstrengthenedsupports,andconfirmsthenecessityandthescientificnatureofsafetymonitoringofthefoundationpit.5.CONCLUSIONSThroughthehorizontaldisplacementandsettlementandinclinationofadjacentbuildingmonitoringforfoundationpitpromptly,safetycontrolcanbecarriedonscientificallyandeffectivelyfortheprojectconstructionofthefoundationpitbecomestrue(Zhuetal.,2006).Accordingtoprogressoftheprojectconstructionandanalysisofthemonitordata,itcantimelyandeffectivelyobtainthesafetyforewarning,andrealizetheinformationconstructionwithscientificidea.Andadoptingeffectivetechniquemeanstotreatsupportingandprotectingstructureofthefoundationpitaccordingtothemonitordata,itcouldavoidthepersonalinjuriesandthepropertydamageeffectivelycreatingbythelandslideofthedeepfoundationpit,andpreventinclinationofadjacentbuildingsandsettlementofroads,guaranteetheprojectworkingsmoothly(Lietal.,1999).Atthesametime,effectivemonitoringforthefoundationpitandvaliditytestforthesupportingandprotectingstructureofthefoundationcouldreducethefoundationpitjittercausedbythedesignerrors.ForexamplethesupportingandprotectingstructuredesignofthefoundationpitinS5sectionmayincreasetheanchorrodquantityinthisprojectorusethepre-stressedanchorrod.Therefore,monitoringofthefoundationpitthatisasafetycontrolmethodfortheconstructionofthefoundationpiteffectivelyisworthtobepopularizedandapplied.Inthesafetymonitoringworkforthedeepfoundationpit,becauseofthemonitoringforlongtimeandhighrequirementoftheinstrumentprecisionandbetimescharacterofthedataanalysisandtheriskforewarning,thus,thesafetymonitorworkhasgreatdifficulty.Alongwithenhancingthesafetyconsciousnessfortheprojectconstructionofthedeepfoundationpitandthedeepscientificresearch,itispossibletofurthersystemizeandstandardizethesafelymonitorwork.Inthemonitoring,testdatashouldbeprovidedaccurately,thesafewarningandthedataanalysisworkarecompletedintime,thelevelandeffectofmonitorshouldbeincreased,allofaboveisforpurposetoguaranteesecurityoftheengineeringconstruction.REFERENCES[1]TangYeqing(1997).Preventionandprocessingofaccidentsofthedeepfoundationpit.ConstructionTechnique,(1),4-5.[2]SunZhibin(2006).Theinfluenceofthedeepfoundationpittoenvironment.GroundEngineering,(5),24-26.[3]LiuRong(2006).Theresearchaboutearlywarningsystemofprojectconstructionofthedeepfoundationpitbasedonriskmanagement.SoutheastUniversity,Nanjing.[4]LiuYuyi,andAnQingjun,andWangXudong(2007).Distortionmonitorandanalysisofthefoundationpitinhardsoillocation.NanjingIndustrialUniversityJournal(naturalsciencesversion),(2),46-50.[5]LuSanhe(2003).Designandresearchaboutdistortioncontrolofsupportandprotectionofthedeepfoundationpit.ChinaOceanographyUniversity,Qingdao.[6]LongSichun,andYangMinchun,andDengLianjun(2005).Twokindofpracticalmethodofhorizontaldisplacementsobservationandtheprecisionanalysis[J].SurveyandSpatialGeographyInformation,(5),57-59.[7]ZhuJianmin,LiGuoguang(2006).Theapplicationofinformationmonitortechnologyinthemanagementofprojectconstructionofthefoundationpit[J].TodayScienceandTechnology,(10),37-39.[8]LiQimin,KongYongan(1999).GeneralizedanalysisaboutprojectaccidentsofthedeepfoundationpitinChina.ScientificandTechnicalInformationDevelopmentandEconomy,(2),21-24.〔2〕译文深基坑施工的平安监测和预警摘要:基于工程工程之上,本文最初对基坑建立了一个观察点,其功能为确定基坑监测的预警值。在工程工程的建设当中,我们进行了一项关于水平位移与邻近建筑物沉降并的实验并及时对基坑实时监测、提交数据的科学数据分析报告。这项工作旨在提供有效的措施,实现根底施工的平安报警。详细的分析基坑变形的原因并提出了一种合理的综合治疗措施。其目的是能够提供出一些科学根底和保护措施以使根底工程施工保持足够的平安性,并获取更多更好的工程施工的技术。正文:随着中国城市化的快速开展,深基坑的开挖工程对其需要空间的位置、结构的稳定性和使用功能已提出更严格要求规定。深基坑工程主要应用于交通繁忙和高密度施工地区。由于深基坑开挖深度和施工繁琐以及相关的复杂环境条件,很可能致使严重的工程事故产生。深基坑开挖工作是一个全方位综合性工程技术的过程。在先前的研究中可知,全国深基坑工程事故的发生率一般约为全部深基坑工程工作的20%(唐,1997〕。多数发生在城市的意外事故是因为基坑支护问题不周,在深基坑工程中,由支撑结构强度变化和基坑周围环境的变化所引起的变形问题应值得考虑(孙,2006〕。基坑支撑体系通常为临时设施,因只有较少的平安考前须知而有更多的危害,与此同时,工作状态和条件是更复杂和不确定的,因此,在施工过程中,动态监测和控制是非常重要的。深基坑开挖施工现场的监测内容一般包括支护结构水平位移、相邻建筑物的倾斜位移、附近的道路沉降位移等。监测人员应及时提供监测数据的反应信息〔刘,2006〕,一旦出现到任何问题,能够为减少灾害提早发出警告。可以说提供关键信息和科学有效地管理深基坑施工的监测程序是成功的深基坑施工的关键(刘等人,2007〕。1、工程背景深基坑工程通常位于城市中心,来自地质勘察工程类型的地形是等同于三阳台的长江流域及西南濒临阶地的成都平原最前沿的构造剥蚀和慢岗坡基地。土质条件:通过地质部门的现场调查,工程场地地基土质物理力学指标如表1所示。表1地基土质物理力学指标土质编号土质类型密度Γ/kN.m-3塑性指数凝聚力c/kpa内部摩擦力Angleφ/01-1杂填土19.1—5201-2平原土壤19.311.815122-1淤泥粘土19.512.325143-1粘土18.513.14216地下水文地质条件。地表水的拟议站点不是最主要的,与基岩裂缝水有关的主要是地下的水。少量的上部积水填充土壤1-1层,主要是由降水和地表径流的渗透所提供。上部积水水位不是连续的,也不是体积较小的。在基岩裂缝水增长井附近的基石与覆盖层中的水沿渗透裂缝后在一定程度上会形成地下水沿渗透冰河的绿色通道,因此使得地下水沿坡面渗透出来。环境条件分析的结果和水质量的地下水样本表示站点中的地下水没有不腐蚀混凝土的结构,但有弱腐蚀性的钢结构。2、基坑支护结构的设计一般支持方案的坑就是分类有两种:一是土钉墙,二是是锚支护桩。土钉墙由加筋的土、土钉和安放在土壤中的板材所组成。鉴于原位的土钉和喷涂向上外表,天然土体形式结合加强土壤舱壁。这类似于重力式挡墙,能抵御来自墙和其他外部势力的土压力并能够增强基坑整个边坡的稳定性。挡锚桩钻孔灌注桩挡土墙和桩,锚拉杆通常会影响边坡稳定性的实现。锚索支护桩的机制是密护坡桩高弯曲的阻力及抗剪能力,同时锚拉杆和土体的锚局部以密护坡桩,能够共同采取预拉力强度以防止基坑支护体系发生变形。锚杆杆和边坡防护桩的综合的效果增强了整个的支持和保护系统的稳定。锚索支护桩适用于各类粘土、沙质土壤和较高的地下水位与接地层,尤其是粘性土外围大集中式负荷或不同加载〔路,2003〕。基于保证平安的原那么,本深基坑工程建议在开挖过程中使用挡锚桩根底进行支护。〔1〕在基坑的AD段局部,应设置以下的参数:900毫米的警卫桩桩径、桩间间隔距离为1300毫米、14米的人力挖孔灌注桩的非预应力锚杆长度有15°倾斜角度,15米长度应设立自然地面下3m。〔2〕在基坑的AB段局部,应设置以下的参数:900毫米的警卫桩桩径、桩间间隔距离为1300mm、13.4米长度的人力挖孔灌注桩的非预应力锚杆倾斜角度为15°,15米长度应设立在自然地面下3米。〔3〕在基坑的BC段局部,应设置以下参数:1000毫米的警卫桩桩径、桩间隔1300毫米、7米长度的灌注桩的电源挖孔有15°倾角、非预应力锚杆桩达15米长度。〔4〕在基坑的AB段局部,应设置以下的参数:1000毫米的警卫桩桩径、桩间隔为1300毫米、7米长度的人力挖孔灌注桩有15°倾角、非桩灌注桩的预应力锚定杆长度达16米。3、根底基坑监测根底基坑工程监测取决于《工程测量标准》(GB50026-93)与《施工变形调查规定》〔JGJ/T8-97〕。规定有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论