版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第12章全等三角形测试卷一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2020·河北省初二期末)如图,△ABE≌△ACF,若AB=5,AE=2,则EC的长度是()A.2 B.3 C.4 D.5【答案】B【解析】解:∵△ABE≌△ACF,AB=5,AE=2,∴AB=AC=5,∴EC=AC-AE=5-2=3,故选:B.2.(2020·陕西省初三二模)如图,在四边形中,对角线AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对 B.2对 C.3对 D.4对【答案】C【解析】∵AB=AD,CB=CD,AC公用,∴△ABC≌△ADC(SSS).∴BAO=DAO,BCO=DCO.∴△BAO≌△DAO(SAS),△BCO≌△DCO(SAS).∴全等三角形共有3对.故选C.3.(2020·福州四十中金山分校初二月考)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,若添加下列一个条件后,仍然不能证明△ABC≌△DEF,则这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF【答案】D【解析】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选D.4.(2022·河南省初二期中)如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN(
)A.AM=CN
B.AB=CD
C.AM∥CN
D.∠M=∠N【答案】A【解析】解:A、MB=ND,AM=CN,∠MBA=∠NDC,△ABM和△CDN不一定全等,错误,符合题意;B、∵MB=ND,AM=CN,AB=CD,∴△ABM≌△CDN(SSS),正确,不符合题意;C、∵AM∥CN,∴∠A=∠NCD,又∠MBA=∠NDC,MB=ND,∴△ABM≌△CD(AAS),正确,不符合题意;D、∵∠M=∠N,MB=ND,∠MBA=∠NDC,∴△ABM≌△CDN(ASA),正确,不符合题意;故答案为:A.5.(2022·湖北省初二期中)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D【答案】C【解析】A、已知AB=DE,加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、已知AB=DE,加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知AB=DE,加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意.故选C.6.(2020·曲靖市沾益区播乐乡罗木中学初二月考)下列三角形不一定全等的是()A.有两个角和一条边对应相等的三角形B.有两条边和一个角对应相等的三角形C.斜边和一锐角对应相等的两个直角三角形D.三条边对应相等的两个三角形【答案】B【解析】根据全等三角形的判定:ASA或AAS可知:有两个角和一条边对应相等的两个三角形全等,故A不正确;当有两边和一角对应相等的两三角形,只有当两边及其夹角对应相等时,即SAS,两三角形全等,故B正确;根据一锐角对应相等时,直角和另一锐角也对应相等,故根据ASA或AAS可判断两三角形全等,故C不正确;根据三边对应相等的两三角形全等(SSS),故D不正确.故选:B.7.(2020·江西省初一月考)有一个小口瓶(如图所示),想知道它的内径是多少,但是尺子不能伸到里边直接测,于是拿两根长度相同的细木条,把两根细木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,那么△OAB≌△OCD理由是()A.边角边 B.角边角 C.边边边 D.角角边【答案】A【解析】根据SAS得:△OAB≌△OCD.则AB=CD.故选A.8.(2020·哈尔滨工业大学附属中学校初一期中)如图,在△ABC和△CDE中,若∠ACB=∠CED=90°,AB=CD,BC=DE,则下列结论中不正确的是()A.△ABC≌△CDE B.CE=AC C.AB⊥CD D.E为BC的中点【答案】D【解析】在Rt△ABC和Rt△CDE中,∴△ABC≌△CDE,∴CE=AC,∠D=∠B,∴CD⊥AB,D:E为BC的中点无法证明故A、B、C.正确,故选.D9.(2022·福建省泉州实验中学初二期末)如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44° B.66° C.88° D.92°【答案】D【解析】解:∵PA=PB,∴∠A=∠B,∵AM=BK,BN=AK,∴故选D.10.(2022·山东省青岛第五十九中学初一月考)某同学不小心把一块玻璃打碎了,变成了如图所示的三块,现在要到玻璃店配一块完全一样的玻璃,那么应带哪块去才能配好()A.① B.② C.③ D.任意一块【答案】A【解析】解:只第①块玻璃中包含两角及这两角的夹边,符合ASA.故选A.11.(2020·全国初一课时练习)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个【答案】C【解析】要使△ABP与△ABC全等,必须使点P到AB的距离等于点C到AB的距离,即3个单位长度,所以点P的位置可以是P1,P2,P4三个,故选C.12.(2022·偃师市实验中学初二月考)如图,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1 B.2 C.3 D.4【答案】D【解析】如图:①∵∠BAC=∠DAE=90°,
∴∠BAC+∠DAC=∠DAE+∠DAC,
即∠BAD=∠CAE.
在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),
∴BD=CE,∴①正确;
②∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ABD+∠DBC=45°.
∴∠ACE+∠DBC=45°,∴②正确;
∵△ABD≌△ACE,
∴∠ABD=∠ACE.
∵∠CAB=90°,
∴∠ABD+∠AFB=90°,
∴∠ACE+∠AFB=90°.
∵∠DFC=∠AFB,
∴∠ACE+∠DFC=90°,
∴∠FDC=90°.
∴BD⊥CE,∴③正确;④∵∠BAC=∠DAE=90°,∠BAC+∠DAE+∠BAE+∠DAC=360°,∴∠BAE+∠DAC=180°,故④正确.所以①②③④都正确,共计4个.故选D.13.(2020·江西科技学院附属中学初二月考)中,厘米,,厘米,点D为AB的中点如果点P在线段BC上以v厘米秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动若点Q的运动速度为3厘米秒,则当与全等时,v的值为A. B.3 C.或3 D.1或5【答案】C【解析】①当BD=PC时,∵点D为AB的中点,∴BD=AB=6厘米,∵BD=PC,∴BP=9-6=3(厘米),∴CQ=BP=3厘米,∴点Q运动了3÷3=1秒∴点P在线段BC上的运动速度是3÷1=3(厘米秒),②当BD=CQ时,∴BD=CQ=6厘米,点Q运动了6÷3=2秒.∵△BDP≌△CQP,∴BP=CP=厘米,∴点P在线段BC上的运动速度是÷2=2.25(厘米秒),故选C.14.(2021·长沙市开福区青竹湖湘一外国语学校初二开学考试)如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按图中所标注的数据,计算图中实线所围成的面积S是()A.50 B.62 C.65 D.68【答案】A【解析】∵如图,AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90º,∠EAF+∠BAG=90º,∠ABG+∠BAG=90º⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△AGB,∴AF=BG,AG=EF.同理证得△BGC≌△CHD得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16−3×4−6×3=50.故选A.二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.(2020·宁津县育新中学初一期中)如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,则阴影部分面积是_____【答案】48【解析】根据题意得:DE=AB=10;BE=CF=6;CH∥DF,∴EH=10﹣4=6;EH:HD=EC:CF,即6:4=EC:6,∴EC=9,∴S△EFD=×10×(9+6)=75;S△ECH=×9×6=27,∴S阴影部分=75﹣27=48.故答案为48.16.(2020·万杰朝阳学校初一期中)如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________【答案】135°【解析】∵AC=BE,BC=DE,∠ACB=∠BED=90°,∴△ABC≌△BDE(SAS),∴∠1=∠DBE,∵∠DBE+∠3=90°,∴∠1+∠3=90°,∵∠2=×90°=45°,∴∠1+∠2+∠3=90°+45°=135°.故答案是:135°.17.(2017·河南省初二期中)如图,直线经过正方形的顶点分别过此正方形的顶点、作于点、于点.若,则的长为________.【答案】13【解析】∵ABCD是正方形(已知),∴AB=AD,∠ABC=∠BAD=90°;又∵∠FAB+∠FBA=∠FAB+∠EAD=90°,∴∠FBA=∠EAD(等量代换);∵BF⊥a于点F,DE⊥a于点E,∴在Rt△AFB和Rt△AED中,∵,∴△AFB≌△AED(AAS),∴AF=DE=8,BF=AE=5(全等三角形的对应边相等),∴EF=AF+AE=DE+BF=8+5=13.故答案为13.18.(2020·广西壮族自治区初三期末)如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出______个.【答案】4【解析】如图,能画4个,分别是:以D为圆心,AB为半径画圆;以C为圆心,CA为半径画圆.两圆相交于两点(DE上下各一个),分别于D、E连接后,可得到两个三角形;以D为圆心,AC为半径画圆;以E为圆心,AB为半径画圆.两圆相交于两点(DE上下各一个),分别于D、E连接后,可得到两个三角形.因此最多能画出4个19.(2022·吉林省初二期末)如图,在平面直角坐标系中,已知点A(0,3),B(9,0),且∠ACB=90°,CA=CB,则点C的坐标为________.【答案】(6,6)【解析】如图,过点C作CE⊥OA,CF⊥OB,∵∠AOB=,∴四边形OECF是矩形,∴∠ECF=,∵∠ACB=,∴∠ACE=∠BCE在△ACE和△BCF中,∴△ACE≌△BCF,∴CE=CF,∵四边形OECF是矩形,∴矩形OECF是正方形,∴OE=OF,∵AE=OE−OA=OE−3,BF=OB−OF=9−OF,∴OE=OF=6,∴C(6,6),故答案为(6,6).三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)20.(2020·湖北省初三一模)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.【答案】答案见解析【解析】解∵BE=CF,∴BE+EF=CF+EF,即BF=CE.在△ABF和△DCE中,∴△ABF≌△DCE,∴∠A=∠D.21.(2022·广西壮族自治区初三学业考试)已知:如图,∠BAC=∠DAM,AB=AN,AD=AM,求证:∠B=∠ANM.【答案】证明见解析.【解析】证明:∵∠BAC=∠DAM,∠BAC=∠BAD+∠DAC,∠DAM=∠DAC+∠NAM,∴∠BAD=∠NAM.在△BAD和△NAM中,∵AB=AN,∠BAD=∠NAM,AD=AM,∴△BAD≌△NAM(SAS),∴∠B=∠ANM.22.(2020·河南省初二期末)如图,在△ABC中,∠BAC=50°,∠C=60°,AD⊥BC,(1)用尺规作图作∠ABC的平分线BE,且交AC于点E,交AD于点F(不写作法,保留作图痕迹);(2)求∠BFD的度数.【答案】(1)见解析;(2)55°【解析】解:(1)如图所示,BE即为所求;
(2)∵∠BAC=50°,∠C=60°,
∴∠ABC=180°−∠BAC−∠C=70°,
由(1)知BE平分∠ABC,
∴∠DBC=∠ABC=35°,
又∵AD⊥BC,
∴∠ADB=90°,
则∠BFD=90°−∠DBC=55°.23.(2020·衡水市第九中学初二期中)已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE【答案】详见解析【解析】证明:如图,过点C作CF⊥AD交AD的延长线于F,∵AC平分∠BAD,CE⊥AB,∴CE=CF,∵∠B+∠ADC=180°.∠ADC+∠CDF=180°(平角定义),∴∠CDF=∠B,在△CDF和△CBE中,,∴△CDF≌△CBE(AAS),∴DF=BE,在Rt△ACF和Rt△ACE中,,∴Rt△ACF≌Rt△ACE(HL),∴AE=AF,∵AF=AD+DF,∴AE=AD+BE.24.(2020·偃师市实验中学初二月考)如图,AD⊥BC于D,AD=BD,AC=BE.(1)请说明∠1=∠C;(2)猜想并说明DE和DC有何特殊关系.【答案】见解析【解析】(1)∵AD⊥BC于D,∴∠BDE=∠ADC=90°.∵AD=BD,AC=BE,∴Rt△BDE≌Rt△ADC(HL),∴∠1=∠C.(2)DE=DC.理由如下:由(1)知△BDE≌△ADC,∴DE=DC.25.(2020·山东省初三一模)如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作等腰直角三角形ADE,AD=AE,∠DAE=90º.解答下列问题:(1)如果AB=AC,∠BAC=90º.①当点D在线段BC上时(与点B不重合),如图乙,线段CE、BD之间的位置关系为,数量关系为.(不用证明)②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90º,点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CE⊥BD(点C、E重合除外)?画出相应的图形,并说明理由.【答案】见解析【解析】解:(1)①CE与BD位置关系是CE⊥BD,数量关系是CE=BD.理由:如图乙,∵∠BAD=90°−∠DAC,∠CAE=90°−∠DAC,∴∠BAD=∠CAE.又BA=CA,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=∠B=45°且CE=BD.∵∠ACB=∠B=45°,∴∠ECB=45°+45°=90°,即CE⊥BD.故答案为:CE⊥BD;CE=BD.②当点D在BC的延长线上时,①的结论仍成立.如图丙,∵∠DAE=90°,∠BAC=90°,∴∠DAE=∠BAC,∴∠DAB=∠EAC,又AB=AC,AD=AE,∴△DAB≌△EAC,∴CE=BD,且∠ACE=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,即
CE⊥BD;(2)如图丁所示,当∠BCA=45°时,CE⊥BD.理由:过点A作AG⊥AC交BC于点G,∴AC=AG,∠AGC=45°,即△ACG是等腰直角三角形,∵∠GAD+∠DAC=90°=∠CAE+∠DAC,∴∠GAD=∠CAE,又∵DA=EA,∴△GAD≌△CAE,∴∠ACE=∠AGD=45°,∴∠BCE=∠ACB+∠ACE=90°,即CE⊥BD.26.(2020·福州四十中金山分校初二月考)(问题提出)学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.(初步思考)我
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《人力资本对产业结构升级的影响研究》
- 《PNF技术联合常规康复训练对脑卒中偏瘫患者运动功能影响的研究》
- 《以生物质为碳源的人工湿地型微生物燃料电池脱氮研究》
- 信息与通信课程设计
- 《多层复合材料切削温度测量关键技术实验研究》
- 《大学生团队合作精神及教育研究》
- 《基于5E教学模式的初中生物活动课教学的实践研究》
- 《戴震的理欲观研究》
- 护理协议书范文
- 医美整形项目客户管理制度
- 圆及其在生活中的应用
- 春节晚宴策划方案1
- 如何制作一个简易的动物细胞模型
- 2024年便携式X光机行业分析报告及未来发展趋势
- 腾讯公司营销策略
- 起重指挥手培训课件
- 农商银行信贷客户经理管理办法
- 人才公寓建设实施计划书
- 2024传染病预防ppt课件完整版
- 新教材苏教版三年级上册科学全册单元测试卷
- 病理性跳楼的心理咨询技巧与方法
评论
0/150
提交评论