![(新高考)高考数学一轮复习讲义+巩固练习10.8《二项分布、超几何分布与正态分布》(原卷版)_第1页](http://file4.renrendoc.com/view11/M00/2C/35/wKhkGWWy_HuAPy3cAAG7D2CHTAI258.jpg)
![(新高考)高考数学一轮复习讲义+巩固练习10.8《二项分布、超几何分布与正态分布》(原卷版)_第2页](http://file4.renrendoc.com/view11/M00/2C/35/wKhkGWWy_HuAPy3cAAG7D2CHTAI2582.jpg)
![(新高考)高考数学一轮复习讲义+巩固练习10.8《二项分布、超几何分布与正态分布》(原卷版)_第3页](http://file4.renrendoc.com/view11/M00/2C/35/wKhkGWWy_HuAPy3cAAG7D2CHTAI2583.jpg)
![(新高考)高考数学一轮复习讲义+巩固练习10.8《二项分布、超几何分布与正态分布》(原卷版)_第4页](http://file4.renrendoc.com/view11/M00/2C/35/wKhkGWWy_HuAPy3cAAG7D2CHTAI2584.jpg)
![(新高考)高考数学一轮复习讲义+巩固练习10.8《二项分布、超几何分布与正态分布》(原卷版)_第5页](http://file4.renrendoc.com/view11/M00/2C/35/wKhkGWWy_HuAPy3cAAG7D2CHTAI2585.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
§10.8二项分布、超几何分布与正态分布考试要求1.理解二项分布、超几何分布的概念,能解决一些简单的实际问题.2.借助正态分布曲线了解正态分布的概念,并进行简单应用.知识梳理一、二项分布1.伯努利试验只包含两个可能结果的试验叫做伯努利试验;将一个伯努利试验独立地重复进行n次所组成的随机试验称为n重伯努利试验.2.二项分布一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p(0<p<1),用X表示事件A发生的次数,则X的分布列为P(X=k)=Ceq\o\al(k,n)pk(1﹣p)n﹣k,k=0,1,2,…,n.3.两点分布与二项分布的均值、方差(1)若随机变量X服从两点分布,则E(X)=p,D(X)=p(1﹣p).(2)若X~B(n,p),则E(X)=np,D(X)=np(1﹣p).二、超几何分布一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=eq\f(C\o\al(k,M)C\o\al(n-k,N-M),C\o\al(n,N)),k=m,m+1,m+2,…,r,其中,n,N,M∈N*,M≤N,n≤N,m=max{0,n﹣N+M},三、正态分布1.定义若随机变量X的概率分布密度函数为f(x)=eq\f(1,σ\r(2π))·SKIPIF1<0,x∈R,其中μ∈R,σ>0为参数,则称随机变量X服从正态分布,记为X~N(μ,σ2).2.正态曲线的特点(1)曲线是单峰的,它关于直线x=μ对称;(2)曲线在x=μ处达到峰值eq\f(1,σ\r(2π));(3)当|x|无限增大时,曲线无限接近x轴.3.3σ原则(1)P(μ﹣σ≤X≤μ+σ)≈0.6827;(2)P(μ﹣2σ≤X≤μ+2σ)≈0.9545;(3)P(μ﹣3σ≤X≤μ+3σ)≈0.9973.4.正态分布的均值与方差若X~N(μ,σ2),则E(X)=μ,D(X)=σ2.常用结论1.两点分布是二项分布当n=1时的特殊情形.2.“二项分布”与“超几何分布”的区别:有放回抽取问题对应二项分布,不放回抽取问题对应超几何分布,当总体容量很大时,超几何分布可近似为二项分布来处理.3.在实际应用中,往往出现数量“较大”“很大”“非常大”等字眼,这表明试验可视为n重伯努利试验,进而判定是否服从二项分布.4.超几何分布有时也记为X~H(n,M,N),其均值E(X)=eq\f(nM,N),D(X)=eq\f(nM,N)eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(M,N)))eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(n-1,N-1))).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)X表示n次重复抛掷1枚骰子出现点数是3的倍数的次数,则X服从二项分布.()(2)从4名男演员和3名女演员中选出4人,其中女演员的人数X服从超几何分布.()(3)n重伯努利试验中各次试验的结果相互独立.()(4)正态分布是对连续型随机变量而言的.()教材改编题1.已知X~B(20,p),且E(X)=6,则D(X)等于()A.1.8B.6C.2.1D.4.22.在含有3件次品的10件产品中,任取4件,X表示取到的次品的个数,则P(X=2)=________.3.某班有50名同学,一次数学考试的成绩X服从正态分布N(110,102).已知P(100<X≤110)=0.34,估计该班学生数学成绩在120分以上的有________人.题型一二项分布例1在一次国际大型体育运动会上,某运动员报名参加了其中3个项目的比赛.已知该运动员在这3个项目中,每个项目能打破世界纪录的概率都是eq\f(2,3),那么在本次运动会上:(1)求该运动员至少能打破2项世界纪录的概率;(2)若该运动员能打破世界纪录的项目数为X,求X的分布列及均值.教师备选出租车司机从饭店到火车站途中经过六个交通岗,假设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是eq\f(1,3).(1)求这位司机遇到红灯前,已经通过了两个交通岗的概率;(2)求这位司机在途中遇到红灯数X的均值与方差.思维升华判断某随机变量是否服从二项分布的关键点(1)在每一次试验中,事件发生的概率相同.(2)各次试验中的事件是相互独立的.(3)在每一次试验中,试验的结果只有两个,即发生与不发生.跟踪训练1某公司为了解会员对售后服务(包括退货、换货、维修等)的满意度,从下半年的会员中随机调查了20个会员,得到会员对售后服务满意度评分的雷达图如图所示.规定评分不低于80分为满意,否则为不满意.(1)求这20个会员对售后服务满意的频率;(2)以(1)中的频率作为所有会员对该公司售后服务满意的概率,假设每个会员的评价结果相互独立,现从下半年的所有会员中随机选取3个会员.①求只有1个会员对售后服务不满意的概率;②记这3个会员中对售后服务满意的会员的个数为X,求X的均值与标准差(标准差的结果精确到0.1).题型二超几何分布例22021年5月30日清晨5时01分,天舟二号货运飞船在成功发射约8小时后,中国航天器的“浪漫之吻”再度在太空上演,天舟二号货运飞船与中国空间站天和核心舱顺利实现了快速交会对接.据航天科技集团五院的专家介绍,此次天舟货运飞船携带的物资可以供3名航天员在太空中生活3个月,这将创造中国航天员驻留太空时长新的记录.如果首次执行空间站的任务由3名航天员承担,在3名女性航天员(甲、乙、丙)和4名男性航天员(丁、戊、己、庚)共7名航天员中产生.(1)求所选的3名航天员既有男航天员又有女航天员的概率;(2)求所选的3名航天员中女航天员人数X的分布列及均值.教师备选为庆祝建军节的到来,某校举行“强国强军”知识竞赛.该校某班经过层层筛选,还有最后一个参赛名额要在A,B两名学生中产生,该班委设计了一个选拔方案:A,B两名学生各自从6个问题中随机抽取3个问题作答.已知这6个问题中,学生A能正确回答其中的4个问题,而学生B能正确回答每个问题的概率均为eq\f(2,3).A,B两名学生对每个问题回答正确与否都是相互独立的.(1)分别求A,B两名学生恰好答对2个问题的概率;(2)设A答对的题数为X,B答对的题数为Y,若让你投票决定参赛选手,你会选择哪名学生?请说明理由.思维升华(1)超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:①考察对象分两类;②已知各类对象的个数;③从中抽取若干个个体,考查某类个体数X的概率分布.(2)超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其本质是古典概型.跟踪训练2阳澄湖大闸蟹又名金爪蟹,产于江苏苏州,蟹身青壳白肚,体大膘肥,肉质膏腻,营养丰富,深受消费者喜爱.某水产品超市购进一批重量为100千克的阳澄湖大闸蟹,随机抽取了50只统计其重量,得到的结果如下表所示:规格中蟹大蟹特大蟹重量(单位:克)[160,180)[180,200)[200,220)[220,240)[240,260)[260,280]数量(单位:只)32152073(1)若同一组中的数据用该组区间的中点值作代表,试估计该批大闸蟹有多少只?(所得结果四舍五入保留整数)(2)某顾客从抽取的10只特大蟹中随机购买了4只,记重量在区间[260,280]上的大闸蟹数量为X,求X的分布列和均值.题型三正态分布例3(1)某物理量的测量结果服从正态分布N(10,σ2),下列结论中不正确的是()A.σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B.σ越小,该物理量在一次测量中大于10的概率为0.5C.σ越小,该物理量在一次测量中小于9.99与大于10.01的概率相等D.σ越小,该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等(2)在某市高三的一次模拟考试中,学生的数学成绩ξ服从正态分布N(105,σ2)(σ>0),若P(ξ<120)=0.75,则P(90≤ξ≤120)=________.教师备选1.为了解高三复习备考情况,某校组织了一次阶段考试.若高三全体考生的数学成绩近似服从正态分布N(100,17.52).已知成绩在117.5分以上(不含117.5分)的学生有80人,则此次参加考试的学生成绩低于82.5分的概率为________;如果成绩大于135分的为特别优秀,那么本次数学考试成绩特别优秀的大约有________人.(若X~N(μ,σ2),则P(μ﹣σ≤X≤μ+σ)≈0.68,P(μ﹣2σ≤X≤μ+2σ)≈0.96)2.对一个物理量做n次测量,并以测量结果的平均值作为该物理值的最后结果.已知最后结果的误差εn~Neq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(2,n))),为使误差εn在(﹣0.5,0.5)的概率不小于0.9545,至少要测量________次.(若X~N(μ,σ),则P(|X﹣μ|<2σ)=0.9545)思维升华解决正态分布问题有三个关键点:(1)对称轴x=μ;(2)标准差σ;(3)分布区间.利用对称性可求指定范围内的概率值;由μ,σ,分布区间的特征进行转化,使分布区间转化为3σ特殊区间,从而求出所求概率.注意只有在标准正态分布下对称轴才为x=0.跟踪训练3(1)若随机变量X~B(3,p),Y~N(2,σ2),若P(X≥1)=0.657,P(0<Y<2)=p,则P(Y>4)等于()A.0.2B.0.3C.0.7D.0.8(2)已知随机变量ξ~N(μ,σ2),有下列四个命题:甲:P(ξ<a﹣1)>P(ξ>a+2);乙:P(ξ>a)=0.5;丙:P(ξ≤a)=0.5;丁:P(a<ξ<a+1)<P(a+1<ξ<a+2).如果只有一个假命题,则该命题为()A.甲B.乙C.丙D.丁课时精练1.已知随机变量ξ~B(12,p),且E(2ξ﹣3)=5,则D(3ξ)等于()A.eq\f(8,3)B.8C.12D.242.一个袋中装有4个红球,3个黑球,小明从袋中随机取球,设取到一个红球得2分,取到一个黑球得1分,从袋中任取4个球,则小明得分大于6分的概率是()A.eq\f(13,35)B.eq\f(14,35)C.eq\f(18,35)D.eq\f(22,35)3.袋中装有标号分别为1,2,3,4,5,6的六个相同小球,现有一款摸球游戏,从袋中一次性摸出三个小球,记下号码并放回,如果三个号码的和是3的倍数,则获奖,若有4人参与摸球游戏,则恰好2人获奖的概率是()A.eq\f(36,625)B.eq\f(128,625)C.eq\f(216,625)D.eq\f(336,625)4.如图,在网格状小地图中,一机器人从A(0,0)点出发,每秒向上或向右行走1格到相应顶点,已知向上的概率是eq\f(2,3),向右的概率是eq\f(1,3),则6秒后到达B(4,2)点的概率为()A.eq\f(16,729)B.eq\f(80,243)C.eq\f(4,729)D.eq\f(20,243)5.(多选)已知两种不同型号的电子元件(分别记为X,Y)的使用寿命均服从正态分布,X~N(μ1,σeq\o\al(2,1)),Y~N(μ2,σeq\o\al(2,2)),这两个正态分布密度曲线如图所示,则下列选项正确的是()参考数据:若Z~N(μ,σ2),则P(μ﹣σ≤Z≤μ+σ)≈0.6827,P(μ﹣2σ≤Z≤μ+2σ)≈0.9545.A.P(μ1﹣σ1<X<μ1+2σ1)≈0.8186 B.P(Y≥μ2)<P(Y≥μ1)C.P(X≤σ2)<P(X≤σ1) D.对于任意的正数t,有P(X≤t)>P(Y≤t)6.(多选)袋子中有2个黑球,1个白球,现从袋子中有放回地随机取球4次,取到白球记0分,黑球记1分,记4次取球的总分数为X,则()A.X~Beq\b\lc\(\rc\)(\a\vs4\al\co1(4,\f(2,3))) B.P(X=2)=eq\f(8,81)C.E(X)=eq\f(8,3) D.D(X)=eq\f(8,9)7.甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为eq\f(5,6)和eq\f(1,5),且每次活动中甲、乙猜对与否互不影响,各次活动也不影响,则一次活动中,甲获胜的概率为________,3次活动中,甲至少获胜2次的概率为________.8.一袋中有除颜色不同,其他都相同的2个白球,2个黄球,1个红球,从中任意取出3个球,有黄球的概率是________,若ξ表示取到黄球的个数,则E(ξ)=________.9.“石头、剪刀、布”是一种广泛流传于我国民间的古老游戏,其规则:用三种不同的手势分别表示石头、剪刀、布,两个玩家同时出示各自手势1次记为1次游戏,“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”.双方出示的手势相同时,不分胜负.假设玩家甲、乙双方在游戏时出示三种手势是等可能的.(1)求在1次游戏中玩家甲胜玩家乙的概率;(2)若玩家甲、乙双方共进行了3次游戏,其中玩家甲胜玩家乙的次数记作随机变量X,假设每次游戏的结果互不影响,求X的分布列和方差.10.面对新一轮科技和产业革命带来的创新机遇,某企业对现有机床进行更新换代,购进一批新机床.设机床生产的零件的直径为X(单位:mm).(1)现有旧机床生产的零件10个,其中直径大于124mm的有3个.若从中随机抽取4个,记ξ表示取出的零件中直径大于124mm的零件的个数,求ξ的分布列及均值E(ξ);(2)若新机床生产的零件直径X~N(120,4),从生产的零件中随机取出10个,求至少有一个零件直径大于124mm的概率.参考数据:若X~N(μ,σ2),则P(|X﹣μ|≤σ)≈0.6827,P(|X﹣μ|≤2σ)≈0.9545,P(|X﹣μ|≤3σ)≈0.9973,0.9772510≈0.7944,0.954510≈0.6277.11.(多选)某渔业养殖场新进1000尾鱼苗,测量其体长(单位:毫米),将所得数据分成6组,其分组及频数情况如下表:分组(单位:毫米)[70,75)[75,80)[80,85)[85,90)[90,95)[95,100]频数100100m350150n已知在按以上6个分组作出的频率分布直方图中,[95,100]分组对应小矩形的高为0.01,则下列说法正确的是()A.m=250B.鱼苗体长在[90,100]上的频率为0.16C.鱼苗体长的中位数一定落在区间[85,90)内D.从这批鱼苗中有放回地连续抽取50次,每次一条,则所抽取鱼苗体长落在区间[80,90)上的次数的均值为3012.(多选)某人参加一次测试,在备选的10道题中,他能答对其中的5道.现从备选的10道题中随机抽出3道题进行测试,规定至少答对2题才算合格.则下列选项正确的是()A.答对0题和答对3题的概率相同,都为eq\f(1,8)B.答对1题的概率为eq\f(3,8)C.答对2题的概率为eq\f(5,12)D.合格的概率为eq\f(1,2)13.已知随机变量ξ~N(1,σ2),且P(ξ≤0)=P(ξ≥a),则eq\f(1,x)+eq\f(4,a-x)(0<x<a)的最小值为()A.9B.eq\f(9,2)C.4D.614.一试验田中的某种作物一株生长的果实个数服从正态分布N
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度试用期员工离职风险评估与应对合同
- 地方高校转型的目标与方向
- 游乐园装修监理合同样本
- 2025年中国服饰零售信息化行业发展监测及投资战略研究报告
- 气象观测液氮运输协议
- 城市休闲公园项目概述
- 塑料制品加工厂装修合同
- 二零二五年度电商电商平台入驻与佣金分配合同
- 二零二五年度银行上门收款业务标准化合同模板
- 冷链血液制品直销协议
- 浙江省杭州市2024年中考语文试卷(含答案)
- 码头安全生产知识培训
- 初中数学解《一元二次方程》100题含答案解析
- 种植二期手种植义齿II期手术护理配合流程
- 安全隐患举报奖励制度
- 牛津书虫系列1-6级 双语 4B-03.金银岛中英对照
- 沥青拌合站安装专项施工方案
- 2024-2025学年深圳市南山区六年级数学第一学期期末学业水平测试试题含解析
- 2024-2030年中国免疫细胞存储行业市场发展分析及竞争形势与投资战略研究报告
- 工贸行业企业安全生产标准化建设实施指南
- 机械基础(少学时)(第三版) 课件全套 第0-15章 绪论、带传动-气压传动
评论
0/150
提交评论