排列与组合解题技巧_第1页
排列与组合解题技巧_第2页
排列与组合解题技巧_第3页
排列与组合解题技巧_第4页
排列与组合解题技巧_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

佛山学习前线教育培训中心佛山学习前线教育培训中心高二数学(理)讲义专题:排列与组合解题技巧主要技巧:一.运用两个基本原理例1:n个人参加某项资格考试,能否通过,有多少种可能的结果?练习1:同室四人各写了一张贺年卡,先集中起来,然后每人从中拿一张别人的贺年卡,则四张贺年卡不同的分配方式有()(A)6种(B)9种(C)11种(D)23种二.特殊元素(位置)优先例2:从0,1,……,9这10个数字中选取数字组成偶数,一共可以得到不含相同数字的五位偶数多少个?练习2:8人站成两排,每排4人,甲在前排,乙不在后排的边上,一共有多少种排法?三.捆绑法例3:8人排成一排,甲、乙必须分别紧靠站在丙的两旁,有多少种排法?练习3:记者要为名志愿者和他们帮助的为老人拍照,要求排成一排,位老人相邻但不排在两端,不同的排法共有种种种种四.插入法例4:排一张有8个节目的演出表,其中有3个小品,既不能排在第一个,也不能有两个小品排在一起,有几种排法?练习4:安排位工作人员在月日到月日值班,每人值班一天,其中甲、乙二人都不能安排在月日和日,不同的安排方法共有种。五.排除法例5:求以一个长方体的顶点为顶点的四面体的个数。练习5:100件产品中有3件是次品,其余都是正品。现在从中取出5件产品,其中含有次品,有多少种取法?练习6:8个人站成一排,其中A与B、A与C都不能站在一起,一共有多少种排法?六.机会均等法例6:10个人排成一队,其中甲一定要在乙的左边,丙一定要在乙的右边,一共有多少种排法?练习7:用1,4,5,四个数字组成四位数,所有这些四位数中的数字的总和为288,求。七.转化法例7:一个楼梯共10级台阶,每步走1级或2级,8步走完,一共有多少种走法?参考答案:一.运用两个基本原理加法原理和乘法原理是解排列组合应用题的最基本的出发点,可以说对每道应用题我们都要考虑在记数的时候进行分数或分步处理。例1:n个人参加某项资格考试,能否通过,有多少种可能的结果?解法1:用分类记数的原理,没有人通过,有种结果;1个人通过,有种结果,……;n个人通过,有种结果。所以一共有种可能的结果。解法2:用分步记数的原理。第一个人有通过与不通过两种可能,第二个人也是这样,……,第n个人也是这样。所以一共有种可能的结果。例2:同室四人各写了一张贺年卡,先集中起来,然后每人从中拿一张别人的贺年卡,则四张贺年卡不同的分配方式有()(A)6种(B)9种(C)11种(D)23种解:设四个人分别为甲、乙、丙、丁,各自写的贺年卡分别为a、b、c、d。第一步,甲取其中一张,有3种等同的方式;第二步,假设甲取b,则乙的取法可分两类:(1)乙取a,则接下来丙、丁的取法都是唯一的,(2)乙取c或d(2种方式),不管哪一种情况,接下来丙、丁的取法也都是唯一的。根据加法原理和乘法原理,一共有种分配方式。二.特殊元素(位置)优先例3:从0,1,……,9这10个数字中选取数字组成偶数,一共可以得到不含相同数字的五位偶数多少个?解:个位选0,有个,个位不选0且万位不能选0,有个,所以一共可以得到个偶数。注0,2,4,6,8是特殊元素,元素0更为特殊,首位与末位是特殊的位置。例4:8人站成两排,每排4人,甲在前排,乙不在后排的边上,一共有多少种排法?解:先排甲,有种排法。再排乙,有种排法,再排其余的人,又有种排法,所以一共有种排法。三.捆绑法例5:8人排成一排,甲、乙必须分别紧靠站在丙的两旁,有多少种排法?解:把甲、乙、丙先排好,有种排法,把这三个人“捆绑”在一起看成是一个,与其余5个人相当于6个人排成一排,有种排法,所以一共有=1440种排法。四.插入法例6:排一张有8个节目的演出表,其中有3个小品,既不能排在第一个,也不能有两个小品排在一起,有几种排法?解:先排5个不是小品的节目,有种排法,它们之间以及最后一个节目之后一共有6个空隙,将3个小品插入进去,有种排法,所以一共有=7200种排法。注:捆绑法与插入法一般适用于有如上述限制条件的排列问题。五.排除法例7;求以一个长方体的顶点为顶点的四面体的个数。解:从8个点中取4个点,共有种方法,其中取出的4个点共面的有种,所以符合条件的四面体的个数为个。例8:100件产品中有3件是次品,其余都是正品。现在从中取出5件产品,其中含有次品,有多少种取法?解:从100件产品中取5件产品,有种取法,从不含次品的95件中取出5件产品有种取法,所以符合题意的取法有种。例9:8个人站成一排,其中A与B、A与C都不能站在一起,一共有多少种排法?解:无限制条件有种排法。A与B或A与C在一起各有种排法,A、B、C三人站在一起且A在中间有种排法,所以一共有+=21600种排法。六.机会均等法例10:10个人排成一队,其中甲一定要在乙的左边,丙一定要在乙的右边,一共有多少种排法?解:甲、乙、丙三人排列一共有6种排法,在这6种排法中各种排列顺序在10个人的所有排列中出现的机会是均等的,因此符合题设条件的排法种数为。例11:用1,4,5,四个数字组成四位数,所有这些四位数中的数字的总和为288,求。解:若不为0,在每一个数位上1,4,5,,出现的机会是均等的。由于一共可以得到24个四位数,所以每一个数字在每一个数位上出现6次,于是得到:,解得。若为0,无解。七.转化法例12:一个楼梯共10级台阶,每步走1级或2级,8步走完,一共有多少种走法?解:10级台阶,要求8步走完,并且每步只能走一级或2级。显然,必须有2步中每步走2级,6步中每步走一级。记每次走1级台阶为A,记每次走2级台阶为B,则原问题就相当于在8个格子中选2个填写B。其余的填写A,这是一个组合问题,所以一共有种走法。例13:动点从(0,0)沿水平或竖直方向运动到达(6,8),要使行驶的路程最小,有多少种走法?解:动点只能向上或向右运动才能使路程最小而且最小的路程为14,把动点运动1个单位看成是1步,则动点走了14步,于是问题就转化为在14个格子中填写6个“上”和8个“右”,这也是一个组合的问题,于是得到一共有种走法。八.隔板法例14:20个相同的球分给3个人,允许有人可以不取,但必须分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论